a2 United States Patent

US009430197B2

10) Patent No.: US 9,430,197 B2

Muramatsu 45) Date of Patent: Aug. 30,2016

(54) COMPILER, COMPILE METHOD AND 2003/0030830 Al 2/2003 Yamamura
COMPILE APPARATUS 2003/0236986 Al* 12/2003 Cronce GOG6F 21/14
713/189

(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, 2005/0262042 Al 11/2005 Kondo

Kanagawa (JP) 2008/0320454 Al* 12/2008 Suzuki ...oooocovnn.. GOGF 8/423
717/143
(72) Inventor: Yuichi Muramatsu, Numazu (JP) 2009/0217251 Al* 82009 Connolly GOG6F 11/263
’ ’ 717/140
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) 2011/0072413 Al* 3/2011 Meijer w..covniveens G0761F7§1/3é
(*) Notice: Subject to any disclaimer, the term of this 2013/0290928 Al* 10/2013 Johnsonc.... G0761F7/91/ gg

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/636,609

(22) Filed: Mar. 3, 2015

(65) Prior Publication Data
US 2015/0277864 Al Oct. 1, 2015

(30) Foreign Application Priority Data

Mar. 31, 2014 (JP) woovooececeeeeeeeeeeeeees 2014-072012
(51) Int. CL
GOGF 9/45
GOGF 9/44
(52) US.CL
CPC oo GOGF 8/41 (2013.01); GOGF 9/4448
(2013.01)

(2006.01)
(2006.01)

(58) Field of Classification Search
CPC GO6F 9/4448; GOGF 8/41
USPC ittt 717/140
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,434,625 B1* 82002 Loen HO4L 29/06
709/236
9,256,546 B2* 2/2016 Gschwind GO6F 12/10

FOREIGN PATENT DOCUMENTS

JP 2003-44472
JP 2005-332146

2/2003
12/2005

* cited by examiner

Primary Examiner — John Chavis
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A compiler includes: a memory; and a processor coupled to
the memory and configured to execute a compilation pro-
cess, the compilation process includes: reading a source
code to be compiled and literal tuples each of which is a
combination of a plurality of string literals having meanings
that correspond to each other between a plurality of lan-
guages, and generating a code in which regarding each
literal tuple, a calculation byte length which is greater than
or equal to a longest byte length of the string literal among
the literal tuple is allocated to each of the plurality of string
literals that belong to the literal tuple and a start address of
each string literal is referenced according to a locale desig-
nated at an execution time.

21 Claims, 16 Drawing Sheets

HAS ANALYSIS
BEEN PERFORMED TO THE
AST STATEMENT?.

NO
READ NEXT STATEMENT

DOES STRING LITERAL EXIST? —==

$101

§102

8103
NO

NO

DOES UNSELECTED
LANGUAGE EXIST?.

SELECT LANGUAGE AND READ STRING LITERAL OF
SELECTED LANGUAGE FROM LOCALE RESOURCE FILE

IS BYTE
NGTH OF STRING LITERAL

ONGER THAN THE MAXIMUM.
ENGTH?.

YES

U.S. Patent

Aug. 30, 2016

Sheet 1 of 16

US 9,430,197 B2

. 102
LANGUAGE
STRING 1 $ N
LITERAL
1 L1 Lis Lin
i Lit Lis Lin
M L Liss L
] 103
101 i
/
SOURCE CODE
—
L 1s
U L BiBYTE
)| COMPILER | > >
L is 15}
I
L s Liw |y BiBYTE
INSTRUC
-TION

U.S. Patent Aug. 30, 2016 Sheet 2 of 16 US 9,430,197 B2

FIG.2

200
/

a EXECUTION ENVIRONMENT N\

201
EXECUTABLE FILE -
|

RESOURCE CALL | —202
DLL

...

ENGLISH
RESOURCE FILE

CHINESE
RESOURCE FILE

JAPANESE
RESOURCE FILE

=
)
s
o)
m
=
=
@
[
b
()
m

=
=
@
b
=
@
m

204 205 200
RESOURCE FILE GROUP

T S~)

U.S. Patent Aug. 30, 2016 Sheet 3 of 16 US 9,430,197 B2

300 301 (11 %
" Y 71
DEVELOPMENT | DiSpLAY *20131226" 213
TARGETED FOR DISPLAY'G8-2" 716"

JAPANESE DISPLAY N"& 38 A &P g1 G
LANGUAGE DISPLAY N' £ A" 9|8’
DISPLAY N'Bg: = #a" 05
DISPLAY N"j# 4 %" e
3 =
e ‘g j:
\/ iLaE

302 8
"\ COMPILER /5’03 19| &
306\{ ! 201 &p
- 2

.TXT section %3

304 :

% 38373 - Load BaseReg, StartAddr 25 x

OBJECT =~ Add BaseReg, Offset %9 4

: 28 | oer
FILE 9= Moy Reg1, [BaseReg+34] 597
: 30| =
R
37
unker | 33 44
34
________________________ 35
311 ; 36| 4=
EXECUTABLE FILE - I 37|
312 I 38 &
310 ~ 38
DN 20131226 I rm
GB-; " I 1
BETEA |
JAPANESE TN :
LANGUAGE oy ,
EXECUTION ﬁﬂ%;ﬁ% ,
ENVIRONMENT : :
|

U.S. Patent Aug. 30, 2016 Sheet 4 of 16 US 9,430,197 B2

FIG.4

.Tf(T section

Load BaseReg, StartAddr Ve 320
Add BaseReg, Offset

221 Moy Reg1, [BaseReg+56

012345678910111213141516171819[
2 0/113 112.2:6{G!8!-12|Fluljiiltisiul i

20121122123|24{25|26{2728|29/30{31]32|3334/35{36{37|38 39[
TiairiojBia;sie Sialiair y|[Reispo
40141]42|43|44145146]47148|49/50{51|52|53|54|55/56|57 |58 59[
nisiiibiiiliijtly Siailjairiy|Lieinig:
[6061 62(63164165/66/67(68]6970{71|72(73/74

.Tf(T section

Load BaseReg, StartAddr | _— 330
Add BaseReg, Offset

3¥2—= | Mo:v Reg1, [BaseReg+38]

011231415617 /8[9[10[11]12[13[14/15/16{17[18]19]

1i2.26|G8 - 2|+ @ X
20121(22{23(24|25/26/27]28(29/30{31]32[33/34/35{36{37|38/39|
®|R %S I ®|I

Hat

=
Sl
Bt
H

U.S. Patent Aug. 30, 2016 Sheet 5 of 16 US 9,430,197 B2

FIG.5

401

A

DISPLAY "20131226"
DISPLAY "G8-2"
DISPLAY N"E L@ AER"

DISPLAY N"ZA44" 402
DISPLAY N'E& E 44" COMPILER -~

DISPLAY N"Eh#s sE 8"

\/;4’]{ TXT section

. 403
Load BaseReg, StartAddr /
Add BaseReg, Offset

405—_| Mo:v Reg1, [BaseReg+77]

0(1{2{3[415[6]7]8]/9]/10{11]12]13/14{15[16]17[18]19
0 -2l @B K
Bf [Fiuijliitisiu Tiairiol 8 | = @ &
K iB|#H K #$(Base Sajlair
y| & KX | T | B | B | "R # |Rlespo
nisiiibiiiliiitiy: Siail airjy| B | %
T i H |8 % & #H|Length o
fi iSieiriviijcie| T | #%

8m+mmmm+mmmmmmm_wmmmm AON

US 9,430,197 B2

Sheet 6 of 16

Aug. 30, 2016

U.S. Patent

E . Y BT S
L] IR E
Diuzo CHSR isiuioidisiony eiSi ‘e:sieigloiiei): nisiiiiilinig
01061 <1 P) 4 4 £ vl 1 o 3 A e i £ e A (o (68 2V K11 ed) v (o) 3 A) £ 14 R o 3 A e oA e A (o) (o1 e PR e K 4 £ v A)
alslsls|slslslslslsleltvlv|vIvIvlv v Ivlviclelelelelelelelelelelelz iz izlzlelele e e fe e e e fe e b
- [2i-1819)9izizi | i€i) i0ig|
N
€05 10G
SERIE(We%)
00 —|
205 .
£ : : JEHLLEN AYIdSIA
: : : =
5 E | ¥ T ¥ w|fieles Kyisuodsey|e] | ey BREN AVIASIA
9 ¥ ¥ U TYF Aiejegoseg|z -89 AY1dSIA
BFYEFEEYE F & 0JEL nsyInd|} H221EH0Z, AVTdSIT
el uo-yz sn-us

9O

U.S. Pate

FIG

nt

v

Aug. 30, 2016

Sheet 7 of 16

US 9,430,197 B2

LOCALE
SOURCE FILE RESOURCE FILE
600~ COMPLER
e— L
ANALYSIS UNIT |NLDAENPGE%%EJT 609
601
LEXICAL ANALYSIS UNIT + __LITERAL LIST
SYNTACTCANALYSS | 002 < =%
UNIT JAPANESE | /
i
SEMANTIC ANALYSIS UNIT ———
PROCEDURAL B —] 611
OPERATIONS ANALYSIS{~ 1 | ENGLISH |/
UNIT LITERAL LIST
L— e N e
[NERALREGSTRATONL}[00—
~—~— L
UNIT CHINESE |/~ 912
s06 | LANGUAGE
ALLOCATIONUNIT |~ " _LITERALLIST J
T T
607~] 61
OBJECT CODE
GENERATIONUNIT | .o w
LUTERAL |/
PLACEMENT UNIT
503~ | |
T OBYECT FILE
w
N
504~ OBJECT FILE LINKER EXECUTABLE
| OBJECTFILE | FILE
T T
505~ | |
T OBJECT FILE

——

U.S. Patent Aug. 30, 2016 Sheet 8 of 16 US 9,430,197 B2
712
/_/
PROGRAM
PROVIDER Ak
COMPUTER 701 702 703 704
T =T “ COMMUNICATH\J
CPU | | ROM RAM INTERFACE
| l | l |
INPUT OUTPUT STORAGE DRIVING
DEVICE DEVICE DEVICE DEVICE
. . o
705 706 707 708
PORTABLE
710 STORE MEDIUM

U.S. Patent

Aug. 30, 2016

Sheet 9 of 16

US 9,430,197 B2

RECORD
ID {ENGTH CATEGORY| LENGTH | OFFSET | VALUE
A00001 22 1 8 0 20131226
A00002 18 2 4 8 B8-2
RECORD
ID (ENGTH CATEGORY VALUE
BO0001 20 3 RN PN 610
B00002 16 3 EXE N
B00003 16 3 BER
B00004 18 3 TR
p |RECORD\~aTEGORY VALUE
LENGTH
00001 22 3 Fujitsu Taro 611
€00002 21 3 Base Salary Vad
C00003 31 3 Responsibility Salary
00004 27 3 Length of Service
RECORD
ID "ENGTH CATEGORY VALUE
D00001 20 3 RN 612
D00002 18 3 EXIH Mol
D00003 18 3 MEIH
D00004 14 3 TS
ID MAXIMUM LENGTH | OFFSET
00001 12 0 613
00002 11 12
00003 21 23 -
00004 17 44

U.S. Patent

Aug. 30, 2016

Sheet 10 of 16

US 9,430,197 B2

- .TXT Section
- Prologue:
~ LocaleJudgment:

—— Lea Reg0, GetLocaleReturnAddr

—— Call GetLocale

—— Load Reg1, [Reg0]

- English:

—— Cmp Reg1, 0x0409
— Jne Chinese

" MovReg2,0

—— Jmp EndLocaleJudgment
- Chinese:

—— Cmp Reg1, 0x0804
" Jne Japanese

- Mov Reg2, 1

—— Jmp EndLocaleJudgment
- Japanese:

" Cmp Reg1, 0x0411

—— Jne Others

" MovReg2,?2

—— Jmp EndLocaleJudgment
- Others:

— MovReg2,0

- EndLocaledudgment:

- StartProcedure:

503

U.S. Patent

FIG.11

Aug. 30, 2016

¥

¥

T

[

[

Sheet 11 of 16

Mul Reg2, Y

Add Reg2, X

Load BaseReg, StartAddr
Add BaseReg, Offset

Mov Reg3, [BaseReg+Reg2+0]
Mov DispReg1, Reg3

Mov DispReg2, 12

Call DisplayDevice

Mov Reg3, [BaseReg+Reg2+12]
Mov DispReg1, Reg3

Mov DispReg2, 11

Call DisplayDevice

Mov Reg3, [BaseReg+Reg2+23]
Mov DispReg1, Reg3

Mov DispReg?2, 21

Call DisplayDevice

Mov Reg3, [BaseReg+Reg2+44]
Mov DispReg1, Reg3

Mov DispReg2, 17

Call DisplayDevice

US 9,430,197 B2

503

U.S. Patent Aug. 30,2016 Sheet 12 of 16 US 9,430,197 B2

FIG.12

5101

HAS ANALYSIS
BEEN PERFORMED TO THE

S103
DOES STRING LITERAL EXIST? NO
REGISTER CURRENT STRING

LITERAL IN LANGUAGE YES
INDEPENDENT LITERAL LIST

NO

5104

STRING LITERAL LANGUAGE
DEPENDENT STRING
ITERAL?

YES 5106
| INITIALIZE THE MAXIMUM LENGTH V

5107
NO

DOES UNSELECTED
LANGUAGE EXIST?

SELECT LANGUAGE AND READ STRING LITERAL OF | ~S108
SELECTED LANGUAGE FROM LOCALE RESOURCE FILE

$109

ISBYTE
LENGTH OF STRING LITERAL
ONGER THAN THE MAXIMUL

| UPDATE THE MAXIMUM LENGTH |
|

REGISTER STRING LITERAL READ IN LITERAL LIST | ~S111
OF SELECTED LANGUAGE

U.S. Patent Aug. 30,2016 Sheet 13 of 16 US 9,430,197 B2

(START)
A 4
s S201
COMPUTE OFFSET USING THE MAXIMUM LENGTH
$202
DOES UNSELECTED
LANGUAGE EXIST?
YES
SELECT LANGUAGE AND REFER TO LITERAL LIST OF | — S203
SELECTED LANGUAGE
Y S204
OFS UNSELECTED——— . NO
RECORD REMAIN?

e

READ NEXT RECORD |~ 5205
S206
NO IS ACTUAL
[ENGTH LESS THAN THE MAXIMUM

LENGTH?

8207

PAD STRING LITERAL WITH SPACE CHARACTER
4 S208
OUTPUT STRING LITERAL TO RO SECTION .

U.S. Patent Aug. 30,2016 Sheet 14 of 16 US 9,430,197 B2

FIG.14

/-900

OBJECT FILE
901
0(112[3(4|56(7|8|9(10(11}12(13{14|15{16{17/18|19
Fiuijiiitisiui Tiairiol 8 i & | K
ER g T & K| B Bia s e
iSailairy|l®E KA T &/ | &
K # - - |Rieisipioinisiiibliil

L
&
B
-3

U.S. Patent

Aug. 30, 2016

Sheet 15 of 16

US 9,430,197 B2

i

[

T

T

i

li

LocaleJudgment:

Load BaseReg, StartAddr
Add BaseReg, Offset

Mov Reg3, Reg2

Mul Reg3, 12

Lea Reg4, [BaseReg+Reg3+X+0]
Mov DispReg1, Reg4

Mov DispReg2, 12

Call DisplayDevice

Mov Reg3, Reg2

Mul Reg3, 11

Lea Reg4, [BaseReg+Reg3+X+306]
Mov DispReg1, Reg4

Mov DispReg2, 11

Call DisplayDevice

Mov Reg3, Reg2

Mul Reg3, 21

Lea Reg4, [BaseReg+Reg3+X+69]
Mov DispReg1, Reg4

Mov DispReg?2, 21

Call DisplayDevice

Mov Reg3, Reg2

Mul Reg3, 17

Lea Reg4, [BaseReg+Reg3+X+132]
Mov DispReg1, Reg4

Mov DispReg2, 17

Call DisplayDevice

900

U.S. Patent

FIG.1

ID
C00001
D00001
B000O1
C00002
D00002
B00002
C00003
D00003
B000O3
C00004
D00004
B00004

Aug. 30, 2016

6

ADDRESS LENGTH

Q
Q+2
Q+4
Q+6
Q+8
Q+10
Q+12
Q+14
Q+16
Q+18
Q+20
Q+22

Sheet 16 of 16

L 1000

US 9,430,197 B2

OBJECT FILE

SECTION FOR

LANGUAGE |~ 1001

INDEPENDENT
STRING LITERALS

12

10

10

11

8

6

21

8

6

17

SECTION FOR

LANGUAGE 1002

DEPENDENT STRING
LITERALS

4

8

SECTION FOR

LENGTHS OF STRING]

LITERALS

SECTION FOR

SEQUENCE OF]

INSTRUCTIONS

- 1003

- 1004

US 9,430,197 B2

1

COMPILER, COMPILE METHOD AND
COMPILE APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based in and claims the benefit of
priority from the prior Japanese Patent Application No.
2014-072012 filed on Mar. 31, 2014, the entire contents of
which are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to a com-
piler, a compile method, and a compile apparatus.

BACKGROUND

Many softwares have been multilingualized recent years.
Further, various researches on coping with the problems
resulting from the multilingualization are also being con-
ducted.

For example, information processing apparatuses are sug-
gested as follows in order to deal with matters regarding
control at the time when fonts are registered in a printer. The
following information processing apparatuses intend to
allow an optimum character registration to be achieved
always without causing an increase of man-hours required
for maintenance or a development cost in order to improve
the printing performance of a two-byte font.

First of all, a locale ID (identifier) maintained in an OS
(Operating System) is discerned on a corresponding infor-
mation processing apparatus. Also, the corresponding infor-
mation processing apparatus refers to the discerned locale
ID to determine the number of characters to be registered in
a fixed area as well as a variable area. Thereafter, the
corresponding information processing apparatus registers
fonts, which have a higher use frequency in the correspond-
ing information processing apparatus, in the fixed area of the
printer, and registers fonts, which have a lower use fre-
quency in the corresponding information processing appa-
ratus than the fonts registered in the fixed area, in the
variable area.

Further, the number of multilingualized web pages is also
increasing. Also, the following techniques for making it
possible to reduce the time required for a process of gener-
ating a dynamic content by using JSP (Java (registered
trademark) Server Pages) are also suggested.

In an apparatus for generating a program which prepares
the dynamic content, it is assumed that texts are handled by
being represented by a predetermined general character
encoding. In the meantime, the following two modules are
installed in the corresponding apparatus.

Module for generating a program which prepares the
dynamic content based on a predetermined file containing a
static text for constituting a static portion of the content.

Module for preparing information of character codes by
the character encoding for contents regarding the static text
in advance so that information of character codes may be
used by the program.

In the meantime, the multilingualization does not have a
relevancy only on the printer or the web page. Recently, the
multilingualization for various applications including an
enterprise system is being progressed.

Related techniques are disclosed in, for example, Japa-
nese Laid-Open Patent Publication No. 2003-044472 and
Japanese Laid-Open Patent Publication No. 2005-332146.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY

According to an aspect of the embodiments, a compiler
includes: a memory; and a processor coupled to the memory
and configured to execute a compilation process, the com-
pilation process includes: reading a source code to be
compiled and literal tuples each of which is a combination
of a plurality of string literals having meanings that corre-
spond to each other between a plurality of languages, and
generating a code in which regarding each literal tuple, a
calculation byte length which is greater than or equal to a
longest byte length of the string literal among the literal
tuple is allocated to each of the plurality of string literals that
belong to the literal tuple and a start address of each string
literal is referenced according to a locale designated at an
execution time.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram for explaining a compilation process
executed by a compiler according to a first embodiment;

FIG. 2 is a diagram for explaining a first comparative
example;

FIG. 3 is a diagram (a first view) for explaining a second
comparative example;

FIG. 4 is a diagram (a second view) for explaining the
second comparative example;

FIG. 5 is a diagram for explaining a third comparative
example;

FIG. 6 is a diagram for explaining a summary of a second
embodiment;

FIG. 7 is a block diagram illustrating a configuration of a
compiler according to the second embodiment;

FIG. 8 is a diagram illustrating a hardware configuration
of a computer;

FIG. 9 is a table exemplifying data used in the second
embodiment;

FIG. 10 is a diagram (a first view) exemplifying the
sequence of instructions generated in the second embodi-
ment;

FIG. 11 is a diagram (a second view) exemplifying the
sequence of instructions generated in the second embodi-
ment;

FIG. 12 is a flowchart illustrating a literal list preparation
process performed by the compiler of the second embodi-
ment;

FIG. 13 is a flowchart illustrating an RO section (read-
only section) preparation process performed by the compiler
of the second embodiment;

FIG. 14 is a diagram exemplifying a portion where
language dependent string literals are placed among the RO
section of an object code generated in the third embodiment;

FIG. 15 is a diagram exemplifying the sequence of
instructions generated in the third embodiment; and

FIG. 16 is a diagram exemplifying data embedded in the
object code in a fourth embodiment.

DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present disclosure will
be described with reference to the accompanying drawings
in detail. Descriptions will be made on the following
sequence.

US 9,430,197 B2

3

First of all, descriptions will be made to clarify the
significance of advantages for various embodiments. Next,
descriptions will be made on a first embodiment with
reference to FIG. 1. Thereafter, descriptions will be made on
a first comparative example to a third comparative example
with reference to FIG. 2 to FIG. 5 in order to assist
understanding of various embodiments. Subsequently,
descriptions will be made on a second embodiment to a
fourth embodiment with reference to FIG. 6 to FIG. 16.
Finally, descriptions will be made on other embodiments.

A plurality of string literals having meanings correspond-
ing to each other and written in a plurality of natural
languages may be different from each other in length. In the
meantime, it is uncertain to determine an environment where
the multilingual application is actually executed at the time
when the source code of the application is compiled.

Accordingly, the matters that “which one of a plurality of
string literals of a plurality of languages that may be
different from each other in length is suitable for the locale
that the application is actually executed” is not determined
at the time when the source code is compiled. Such inde-
terminacy may become a factor which causes increase in
cost in a broad sense in at least one phase of the life cycle
of the multilingual application and as a result, some kind of
difficulty or problem may be caused.

For example, the cost in the meaning of the work of a
person who is in charge of development or maintenance may
be increased due to the indeterminacy described above. In
another example, the computational cost resulting from an
execution of the application may be increased due to the
indeterminacy. Increase in cost is a factor which hinders the
multilingualization of the application.

In particular, according to various embodiments as will be
described below, it is possible to further reduce a certain cost
at least one stage of, for example, development, execution,
and maintenance stages during the life cycle of the multi-
lingual application than in the first to third comparative
examples. Reduction of cost is beneficial to promote the
multilingualization of the application. Accordingly, it is
expected that the compiler according to each embodiment
will help promoting the multilingualization of the applica-
tion.

The importance of multilingualization of various appli-
cations including the enterprise system is increasing. The
reasons are as follows.

In recent years, for example, the domestic market in Japan
is becoming stagnant as the market is becoming matured.
Therefore, the number of companies seeking overseas busi-
ness development is increasing. Specifically, activities taken
by companies for globalization (e.g., increasing overseas
investments in the field of ICT (Information and Commu-
nication Technology)) are becoming accelerated.

In the related art, the enterprise system used at overseas
bases of the companies has been committed to individual
overseas bases in many cases. However, due to an advent of
an era in which a cloud service is used in earnest, global-
ization (in other words, internationalization) of the enter-
prise system is now under way. Accordingly, the importance
of internationalization and multilingualization of various
applications including the enterprise system is increasing in
recent years.

Various enterprise systems implemented with various
programming languages exist but among other languages,
COBOL (Common Business-Oriented Language) is used in
implementation of many enterprise systems. Accordingly, in
the following descriptions, COBOL is mainly exemplified.

10

15

20

25

30

35

40

45

50

55

60

65

4

However, other than COBOL, respective embodiments may
be applied to a high-level language, such as C language.

COBOL is equipped with an internationalization support
functionality. For example, handling of the multi-octet char-
acter such as the Chinese character is specified in a COBOL
specification. With the internationalization support function-
ality, COBOL application targeted for various languages (or
various cultural regions) may be easily developed.

However, only the functionality with which inputting and
outputting of the multi-octet character is made easy is
insufficient to achieve internationalization of the application.
A so-called “cultural adaptation” functionality for specify-
ing the operations in a plurality of languages or cultural
regions is beneficial for internationalization of the applica-
tion.

In the meantime, the COBOL standard regarding the
cultural adaptation remains in a limited range regarding, for
example, a conversion of currency or time. The cultural
adaptation functionality defined in the COBOL standard
does not include the functionality of “selecting and output-
ting national literals written in a suitable natural language
among several national literals according to the locale”. That
is, the functionality defined in the COBOL standard has
limitations.

Therefore, a COBOL compiler provided by a vendor of a
COBOL development environment just outputs an object
code which is targeted for a specific single language or
cultural region at the time of compiling the program which
contains natural literals. Accordingly, each application
developer is forced to perform a countermeasure in order for
the application to include the cultural adaptation.

For example, a method that “several resource files per
locale are prepared in addition to a body of an application”
may be considered. Details of the method will be described
later as a first comparative example.

As another example, a method that “a plurality of source
files corresponding to a plurality of locales are prepared and
the source file per locale is compiled, thereby generating a
plurality of executable files corresponding to the plurality of
locales” may also be considered. Details of the method will
be described later as a second comparative example.

In particular, as will be described below, the first com-
parative example and the second comparative example have
room for improvements in that the first and the second
comparative examples cause an occurrence of costs during
the life cycle of the application in a broad sense. That is, the
costs needed for the cultural adaptation functionality (e.g.,
for making the application to be internationalized and mul-
tilingualized) is still high for now regardless of the fact that
the importance of internationalization and multilingualiza-
tion of the application increases as described above.

Accordingly, it is significant to provide a technique to
reduce the costs needed for making the application to be
internationalized and multilingualized. Especially, it is sig-
nificant that the functionality which is helpful for the cost
reduction is provided by the compiler. This is because
dependency on skill or endeavor of each application devel-
oper is reduced when the functionality is provided by the
compiler.

The compilers according to the following various embodi-
ments have an effect of reducing the costs that may be
occurred when intending to make the application to be
internationalized and multilingualized. Accordingly, it is
expected that the compilers according to respective embodi-
ments may help promoting the multilingualization of the
application.

US 9,430,197 B2

5

In the meantime, FIG. 1 is a diagram for explaining a
compilation process executed by a compiler according to a
first embodiment. In the descriptions on FIG. 1, a specific
example may be referenced in the embodiment which will
be described later in order to help understanding.

In FIG. 1, a compiler 100, a source code 101 to be
compiled, and definition information 102 are illustrated.
Hereinafter, a combination of a plurality of string literals
having meanings that correspond to each other between the
plurality of languages is called a “literal tuple”. The defi-
nition information 102 is information which defines the
literal tuple.

The number of literal tuples defined in the definition
information 102 is one or more. In the example of FIG. 1,
M sets of literal tuples are defined (1=M). For example, the
ith (1=i=M) literal tuple is a combination of string literals
Lil, . . ., LiN written in N (1<N) types of languages and
having meanings that correspond to each other.

In FIG. 1, an example in which the object code 103 (e.g.,
code written in a machine language) is generated by the
compiler 100 is illustrated. Depending on the embodiment,
the compiler 100 may generate an assembly code written in
an assembly language.

Further, the compiler 100 is a kind of a program executed
by a computer (e.g., a computer 700 of FIG. 8 which will be
described later). The computer operates as a compile appa-
ratus by executing the program of the compiler 100. In the
following, in order to simplify the descriptions, descriptions
may be made simply as “the compiler 100 generates the
object code 103” instead of describing as “the computer
executes the program of the compiler 100 to generate the
object code 103”.

The compilation process that the compiler 100 causes the
computer to execute includes reading the source code 101
and the definition information 102. Further, the compilation
process includes generating a code (specifically, the object
code 103 or the assembly code).

Further, the definition information 102 may be contained
in a source file in which the source code 101 is written.
Otherwise, the definition information 102 may be contained
in a separate file (e.g., a locale resource file 502 of FIG. 6
which will be described later) from the source file.

The source code 101 may contain a corresponding string
literal or a reference to the corresponding string literal
regarding each of the plurality of string literals written in one
language of the plurality of languages (e.g., N types of
languages in the example of FIG. 1). For example, the
source code 101 may contain the plurality of string literals
itself written in one of the plurality of languages. Otherwise,
the source code 101 may contain references to the plurality
of string literals written in the corresponding one language.
Of course, the source code 101 may include one or more
string literals themselves and the references to the one or
more string literals.

The string literals may be described either in the source
code 101 in order to set, for example, a value in a constant
or a variable or in the source code 101 as a function
parameter.

A format of the reference to the string literal depends on
the specification of a programming language. For example,
when the source code 101 is written in C language, a name
of' macro which defines the string literal may be contained in
the source code 101 as a kind of reference to the string
literal.

10

15

20

25

30

35

40

45

50

55

60

65

6

For convenience of explanation, a case where M string
literals L1s, . . ., LMs that are written in the sth (1=s=M)
language are contained in the source code 101 is illustrated
in FIG. 1.

In the object code 103, a “calculation byte length” which
is equal to or greater than a byte length of the longest string
literal in the corresponding literal tuple is allocated to each
of the plurality of string literals that belong to the corre-
sponding literal tuple, regarding each literal tuple. For
example, the calculation byte length allocated to each of the
string literals Lil, . . ., LiN that belong to the ith literal tuple
is Bi byte in the example of FIG. 1.

That is, Bi is a value which is equal to or greater than the
byte length of the longest string literal among the string
literals Lil, . . ., LiN. Accordingly, each string literal Lij
(1=j=N) falls within a range of Bi byte allocated to the string
literal Lij. Accordingly, generation of, for example, danger-
ous instruction which is likely to cause an unauthorized
memory access beyond the range of Bi byte which is
resulted from referring to the string literal, is prevented
naturally.

Specifically, the calculation byte length corresponding to
each literal tuple may be the byte length itself of the longest
string literal among the plurality of string literals that belong
to the corresponding literal tuple. Otherwise, the calculation
byte length corresponding to each literal tuple may be a
minimum byte length which satisfies the condition that “the
minimum byte length is the multiple of a predetermined byte
length which is unit of memory management and is equal to
or greater than the byte length of the longest string literal
among the plurality of string literals that belong to the
corresponding literal tuple”.

Further, according to the object code 103, a start address
of each string literal is referenced according to the locale
(e.g., locale which is set in the OS in an execution environ-
ment) designated at the time of execution. In other words,
the compiler 100 generates a suitable object code 103 such
that the start address of each string literal is referenced
according to the locale designated at the time of execution.
That is, a plurality of instructions which cause the computer
(e.g., the computer which executes the executable file gen-
erated from the object code 103) to refer to the start address
of each string literal according to the locale in execution is
contained in the object code 103.

Further, more specifically, the “start address of each string
literal” corresponds to a start address of the string literal of
the language according to the locale in execution, among the
plurality of string literals that belong to each literal tuple.

In FIG. 1, for convenience of explanation, the references
to the start addresses are represented by arrows. As repre-
sented by the arrows, the instruction for referring to one of
the start addresses of the string literals Lil, . . . , LiN
according to the locale in execution is contained in the object
code 103.

The compiler 100 generates the plurality of instructions as
described above and inserts the generated plurality of
instruction in the object code 103. More specifically, the
plurality of instructions may contain the following instruc-
tions.

One or more instructions, for example, instructions 803,
804, and 805 of FIG. 10 which will be described later, for
acquiring locale identification information which indicates
the locale designated at the time of execution.

One or more instructions, for example, instructions 807,
808, 810, 812, 813, 815, 817, 818, and 820 of FIG. 10 which
will be described later, for performing a conditional branch
according to the locale identification information.

US 9,430,197 B2

7

One or more instructions, for example, instructions 809,
814, 819, 822, 825~830, 833, 834, 837, 838, 841, and 842
of FIG. 10 and FIG. 11 or instructions 905~908, 911~914,
917~920, and 923~926 of FIG. 15 which will be described
later, for referring to the start address of each string literal
using one of a plurality of numeric values (e.g., N different
numeric values in the example of FIG. 1) corresponding to
the number of the plurality of languages.

One or more instructions for calculating the start address
may be contained in one or more instructions for referring to
the start address of the string literal. The instruction for
calculating the start address may be an arithmetic instruc-
tion, for example, an add instruction or a multiply instruc-
tion. As another example, the instruction for calculating the
start address may be a different type instruction in which
performing an arithmetic operation (addition) of a value
maintained in a certain register with a designated numeric
value is designated in the operand.

For example, instructions 809, 814, 819, 822, 825~830,
833, 834, 837, 837, 841 and 842 are illustrated in FIG. 10
and FIG. 11 which will be described later. These instructions
are examples for calculating and referring to the start
address using one of three numeric values of “0”, “1”, and
“2” that correspond to three languages.

As another example, instructions 905~908, 911~914,
917~920, and 923~926 are illustrated in FIG. 15 which will
be described later. These instructions are examples for
calculating and referring to the start address using one of
three numeric values of “0”, “17, and “2” that correspond to
three languages.

In the examples of FIG. 10, FIG. 11 and FIG. 15, the
“plurality of numeric values” described above are consecu-
tive integers of “0”, “17, and “2”. However, a plurality of
numeric values, for example, “0”, “Y”, and “2Y” that are
non-consecutive (e.g., specific example of “Y” will be
described later together with FIG. 6) may be used depending
on the embodiment.

Further a plurality of numeric values, for example, “a”,
“B+Y”, and “y+2Y” that are numerical values of non-
equivalent interval, may be used depending on the embodi-
ment. Further, it is assumed that “a”, “B”, and “y” are
suitable values determined according to installation by the
compiler 100.

The number of “plurality of numeric values” may well be
a number other than 3 according to the number (e.g., “N” in
FIG. 1) of target languages for defining the string literals in
the definition information 102.

In the meantime, there may be two types of placement of
the plurality of string literals in the object code 103. The
second embodiment which will be described later is an
example in which a first type of placement is adopted and the
third embodiment which will be described later is an
example in which a second type of placement is adopted.

According to the first type of placement, in the object
code 103, the string literals are placed for each language and
a plurality of string literals of the corresponding language
are placed in the order in which plurality of string literals are
defined between the literal tuples, regarding each language.
For example, in the first type placement, MN string literals
may be placed in the object code 103 in the order of
“L1l,...,LM1,L12,...,LM2, LIN, ..., LMN".

In the meantime, according to the second type of place-
ment, in the object code 103, the string literals are placed for
each literal tuple and the plurality of string literals that
belong to the corresponding literal tuple are placed in the
order in which the plurality of string literals are defined
between the plurality of languages, regarding each literal

20

30

40

45

55

8

tuple. For example, in the second type placement, MN string
literals may be placed in the object code 103 in the order of
“L11,...,LIN,L21,...,L2N,...,LMl,...,LMN”".

The compiler 100 generates a suitable instruction accord-
ing to whether which one of the first type of placement and
the second type of placement is intended to be adopted.
Further, even in a case where any one of the first and second
types of placement is adopted, the “calculation byte length”
is allocated to each of the plurality of string literals that
belong to the corresponding literal tuple regarding each
literal tuple in the object code 103.

When the first type of placement is adopted, the compiler
100 may cumulatively add the calculation byte length to
calculate an offset corresponding to each literal tuple. A
specific example of the offset will be described later along
with FIG. 9. In this case, one or more instructions for
referring to the start address of each string literal may
contain the instruction, in which operands including the
offset are designated (for example, instructions 829, 833,
837, and 841 of FIG. 11 which will be described later).

Further, when the first type of placement is adopted, the
compiler 100 may also calculate a total of the calculation
byte lengths of all the literal tuples. For example, the total is
(B1+ . .. +Bi+ . . . +BN) in the example of FIG. 1 and the
total is “Y” in the example of FIG. 11 which will be
described later. In this case, one or more instructions for
referring to the start address of each string literal may
contain the instruction for calculating the start address of the
range within which the plurality of string literals of a single
language which corresponds to the locale in execution
among the plurality of languages are placed, based on the
total of the calculation byte lengths.

For example, when the language which corresponds to the
locale in execution is the jth language among N languages,
the range is, specifically, a range within which the string
literals L1j, . . . , LMj are placed.

For example, the compiler 100 may determine the plu-
rality of numeric values (see descriptions on one or more
instructions for referring to the start address of each string
literal) described above based on the calculated total (see the
example in which “0”, “Y”, and “2Y” are used as the
plurality of numeric values).

Otherwise, the compiler 100 may generate the instruction
for calculating the start address of the range using one of the
plurality of numeric values and the calculated total. For
example, in the examples of FIG. 10 and FIG. 11, “0”, “17,
and “2” are used as the plurality of numeric values and the
calculated total is “Y™. Also, the start addresses of the range
regarding three languages are “(StartAddr+Offset+X)”,
“(StartAddr+Offset+X+Y)”, and “(StartAddr+Offset+X+
2Y)”, respectively, and these start addresses may be calcu-
lated in the course of the execution of instructions 825~829,
833, 837, and 841.

Although details will be described along with the second
embodiment, for example, the instruction 825 is an instruc-
tion for storing a result of multiplication of one of the
plurality of numeric values (“0”, “1”, or “2”) with the
calculated total (“°Y”) in a predetermined register. Further,
calculating the start address of the range using the value of
the corresponding predetermined register is represented as
“BaseReg+Reg2” in the operands of instructions 829, 833,
837, and 841.

In the meantime, the “order in which the string literals are
defined between the literal tuples” in the first type of
placement may be ordered based on the order in which the
string literals (or references to the corresponding string
literals) written in a single language appear in the source

US 9,430,197 B2

9

code 101. This is because a process of replacing the order of
appearance in the source code 101 is unnecessary, and
thus translation performed by the compiler 100 may be
simplified. Further, the order in which the string literals are
defined between the literal tuples is represented by an index
of “1,...,1, ..., M” in the example of FIG. 1 and the
sequence represented by the index is the same as the
appearance sequence of the string literals in the source code
101.

In the meantime, in the second type of placement, the
“order in which the string literals are defined between the
plurality of languages” may be, for example, the order in
which the string literals are defined by the definition infor-
mation 102. For example, the order in which the string

literals are defined between the plurality of languages is
represented by anindex of “1, ..., s, ..., M” in the example
of FIG. 1.

When the second type of placement is adopted, the
compiler 100 may cumulatively add the calculation byte
length to calculate a first value (e.g., the value of “offset”
field in FIG. 9 which will be described later) corresponding
to each literal tuple. In this case, one or more instructions for
referring to the start address of each string literal may
contain the instruction, in which operands including the
number of plurality of languages (e.g., “N” in the example
of FIG. 1 and “3” in the examples of FIG. 14 and FIG. 15)
and a second value determined according to the first value.

Although details will be described along with the third
embodiment, for example, in FIG. 15 which will be
described later, the instruction 907 in which the operand
including “3” which is the number of the plurality of
languages and the value (e.g., “0” which is a result of
multiplication of “3” and “0”) determined according to the
value of “0” which is represented as the offset in FIG. 9 are
designated is illustrated. Similarly, in FIG. 15, the instruc-
tion 913 in which the operand including the value (e.g., “36
which is a result of multiplication of “3” and “12”) which is
determined according to two values of “3” and “12” are
designated is illustrated. Instructions 919 and 925 are
instructions similar to the instructions 907 and 913.

In the meantime, a specific natural language may be used
in the first locale and the second locale. For example, the
English language is used in the United States and Britain.

When a specific natural language is used in the first locale
and the second locale, two of the plurality of languages (e.g.,
N types of languages in FIG. 1) may be the specific natural
language used in the first locale and the specific natural
language used in the second locale. For example, when the
first locale and the second locale are identified as names of
“en-us” and “en-gb”, respectively, the English language
used in the United States and the English language used in
the Britain may be handled as two different languages.

As described above, in the embodiment in which the
specific natural language used in the first locale and the
specific natural language used in the second locale are
discerned, instructions used for the following process are
contained in the plurality of instructions generated by the
compiler 100.

When the locale identification information indicates the
first locale, the start address is calculated by using the first
numeric value among the plurality of numeric values (e.g.,
see descriptions on one or more instructions for referring to
the start address of each string literal) described above.

When the locale identification information indicates the
second locale, the start address is calculated by using the
second numeric value among the plurality of numeric values
described above.

10

15

20

25

30

35

40

45

50

55

60

65

10

Further, the first numeric value corresponds to the specific
natural language used in the first locale. Accordingly, the
start address calculated using the first numeric value is a start
address of the string literal written in the specific natural
language used in the first locale. Further, the second numeric
value corresponds to the specific natural language used in
the second locale. Accordingly, the start address calculated
using the second numeric value is a start address of the string
literal written in the specific natural language used in the
second locale.

In contrast, an embodiment in which the specific natural
language used in the first locale and the specific natural
language used in the second locale are not discerned may be
made. For example, when the first locale and the second
locale are identified as the names of “en-us” and “en-gb”,
respectively, the language identified as two characters of
“en” (the English language) corresponds to the “specific
natural language” which is common between the first locale
and the second locale. That is, an embodiment may be made
in which the English language used in the United States and
the English language used in the Britain may be handled as
the same English language without being discerned.

When the specific natural language used in the first locale
and the specific natural language used in the second locale
are not discerned, one of the plurality of languages (e.g., N
types of languages in FIG. 1) may be the specific natural
language which is common between the first locale and the
second locale. In this case, the following instructions may be
contained among the plurality of instructions generated by
the compiler 100.

That is, the instruction for calculating the start address
using a numeric value of the plurality of numeric values is
contained among the plurality of instructions, in any one of
a case where the locale identification information indicates
the first locale and another case where the locale identifi-
cation information indicates the second locale. The start
address calculated as described above corresponds to a start
address of the string literal written in the natural language
which is common between the first locale and the second
locale.

In the meantime, the language used in the locale desig-
nated at the time of execution may be different from any one
of the plurality of languages (e.g., N types of languages in
FIG. 1). Therefore, the compiler 100 may determine one of
the plurality of languages as a default language to be used in
such a case. A specific example of a method of determining
the default language will be described later.

Here, for convenience of explanation, it is assumed that a
numeric value corresponding to the default language among
the plurality of numeric values (e.g., see descriptions on one
or more instructions for referring to the start address of each
string literal) is the “default numeric value”. When the
compiler 100 determines the default language, the following
instructions are contained in the generated plurality of
instructions. That is, when the locale identification informa-
tion indicates a locale which uses a language different from
any one of the plurality of languages, the instruction for
calculating the start address using the default numeric value
is contained in the plurality of instructions.

For example, in the second embodiment which will be
described later, the default language is the English language
and the default numeric value is O (zero). In FIG. 10, an
instruction 822 for calculating the start address using the
default numeric value is illustrated.

In the meantime, the process of generating the object code
103 may include any one of the following processes.

US 9,430,197 B2

11

A process, for example, step S206 to step S208 of FIG. 13
which will be described later, in which each string literal,
which has a length less than the calculation byte length,
among the plurality of string literals that belong to the
corresponding literal tuple is padded with a predetermined
characters and the string literal padded with the predeter-
mined characters are placed in the object code 103, regard-
ing each literal tuple.

A process in which a numeric value which indicates a
length of each of the plurality of string literals that belong to
each literal tuple is embedded in the object code 103 (see,
e.g., FIG. 16) and in which the instruction for referring to the
address to which the numeric value indicating the length is
embedded is generated.

Further, the source code 101 may contain the language
independent string literals or the references to the language
independent string literals without depending on the locale.
In this case, the process of generating the object code 103
includes a process of inserting the language independent
string literals in the object code 103. For example, as in FIG.
6 which will be described later, all the language independent
string literals may be placed ahead of the string literals of the
plurality of languages. Depending on the embodiment, the
language independent string literals may be placed behind
the string literals of the plurality of languages.

Subsequently, descriptions will be made on a first com-
parative example to a third comparative example in order to
help understanding the advantages of the first embodiment
described above and various embodiments which will be
described later.

FIG. 2 is a diagram for explaining a first comparative
example. Various embodiments are superior to the first
comparative example in the following two points. In a
certain aspect, various embodiments intend to have superi-
ority to the first comparative example as follows.

An execution overhead is smaller than the first compara-
tive example. In other words, a computational cost for
execution is smaller than the first comparative example.

Maintenance cost after the service initiation is smaller
than the first comparative example.

As illustrated in FIG. 2, an executable file 201, a resource
call DLL (Dynamic Link Library) 202, and a resource file
group 203 are utilized in an execution environment 200 of
the first comparative example. The resource file group 203
is a set of N resource files (1<N). These N resource files
correspond to N types of natural languages used in N types
of locales. In the example of FIG. 2, N=3 and the resource
file group 203 includes an English language resource file
204, a Japanese language resource file 205, and a Chinese
language the resource file 206.

The English language resource file 204 contains M string
literals of the English language (1=M). M string literals
having meanings correspond to those M string literals of the
English language and written in the Japanese language are
contained in the Japanese language resource file 205. Fur-
ther, M string literals having meanings correspond to those
M string literals in the English language resource file 204
and written in the Chinese language are contained in the
Chinese language resource file 206.

Respective string literals in each resource file are identi-
fied by an identifier (ID) such as a code number. The same
1D is allocated to three string literals of the English lan-
guage, the Japanese language and the Chinese language
having the meanings that correspond to each other.

At least the following sequence of instructions is con-
tained in the executable file 201.

15

35

40

45

55

60

65

12

Sequence of instructions for recognizing the locale in the
execution environment 200 where the executable file 201 is
executed. For example, sequence of instructions for acquir-
ing the value which indicates the locale set in the Operating
System (OS) of the execution environment 200 through an
Application Programming Interface (API) provided by the
OS.

Sequence of instructions for selecting the resource file
according to the acquired value (e.g., according to the locale
in execution) and reading the string literals from the selected
resource file through the resource call DLL 202.

Accordingly, according to the first comparative example,
when the executable file 201 is executed, the string literal of
the English language, the Japanese language, or the Chinese
language is read according to the locale of the execution
environment 200. The executable file 201 also contains the
sequence of instructions for displaying the string literals
read from the resource file. Accordingly, the string literals
are displayed in the language according to the locale of the
execution environment 200. That is, the multilingualization
is implemented according to the first comparative example.

However, an execution overhead is relatively large in the
first comparative example. In other words, the computa-
tional cost in execution is relatively high in the first com-
parative example.

This is because a certain resource file within the resource
file group 203 is accessed through the resource call DLL 202
at the time of execution. Specifically, an overhead for calling
the resource call DLL 202 from the executable file 201
occurs. Further, an overhead due to a disk access for
referring to the resource file occurs. As described above, an
overhead occurred for referring to the resource file at the
time of execution may cause reduction of an execution
efficiency.

Further, the resource file group 203 is used at the time of
execution in the first comparative example. Accordingly, in
the first comparative example, a cost for suitably managing
the respective resource files within the resource file group
203 may occur even after the service initiation. For example,
it may be considered that a system manager may perform a
certain manual work so that the resource file group 203 is not
erroneously deleted, moved, or edited by an end user.

Subsequently, descriptions will be made on a second
comparative example with reference to FIG. 3 and FIG. 4.
The execution overhead as in the first comparative example
does not occur in the second comparative example. Further,
since the resource file group 203 is not used at the time of
execution in the second comparative example, the cost for
managing the resource file group 203 is unnecessary.

However, in the second comparative example, the pro-
grammer prepares and compiles the source file per locale
and builds an executable file per locale. Accordingly, in the
second comparative example, it takes a time required for
preparing and compiling the source file which is longer than
in the first comparative example. Further, in the second
comparative example, a more labor for building the execut-
able file is required compared to the first comparative
example.

As described above, the second comparative example has
a disadvantage that a burden of the programmer is relatively
large (e.g., a development cost is high). In particular, as will
be described below, various embodiments have a lower cost
for development compared to the second comparative
example. That is, in a certain aspect, various embodiments
intend to lower the cost for development compared to the
second comparative example.

US 9,430,197 B2

13

For example, it is assumed that a certain application may
have a possibility of being used in three execution environ-
ments (e.g., three locales) of an execution environment
where the Japanese language is used, an execution environ-
ment where the English language is used, and an execution
environment where the Chinese language is used. In this
case, in the second comparative example, the programmer
prepares three source files in the development environments
of three languages.

Also, each source file is compiled by the compiler within
each development environment and as a result, three object
files corresponding to three languages are obtained.

Each object file is suitably linked to another object file by
the linker. As a result, three executable files corresponding
to three languages are obtained. The end user executes an
executable file according to an environment of the computer
which is used by the end user among three executable files.

Specifically, in FIG. 3, a development environment 300
which is targeted for the Japanese language and an execution
environment 310 of the Japanese language are illustrated.

The programmer prepares a source file 301 containing the
string literals written in the Japanese language in the devel-
opment environment 300 which is targeted for the Japanese
language. Further, for convenience of explanation, it is
assumed that the source file 301 is written in COBOL. In
COBOL terminology, the string literals represented by con-
secution of characters that belong to a designated national
character set is called a national literal.

In FIG. 3, six string literals contained in the source file
301 are illustrated. Two string literals of “20131226 and
“(38-2” are alphanumeric literals and the language indepen-
dent string literals. That is, these two string literals are
common string literals that are used regardless of the dif-
ference between the Japanese language, the English lan-
guage and the Chinese language.

In the meantime, four string literals of “=Ed@>*EE ”,
“EFRE 7, “HEN 7, and “E#RFH ” are the language depen-
dent string literals written in the Japanese language. That is,
these four string literals are the national literals. Accord-
ingly, “N” which indicates the national literal is designated
in each of four DISPLAY statements for outputting four
string literals.

In the meantime, the programmer assigns the source file
301 to the compiler 302 within the development environ-
ment 300 which is targeted for the Japanese language as an
input. The compiler 302 compiles the source file 301 to
generate an object file 303.

The compiler 302 as well as a linker 305 are provided in
the development environment 300 which is targeted for the
Japanese language. The linker 305 generates (that is, builds)
the executable file 311 from the object file 303 and other
object file 304.

When the executable file 311 is executed in the execution
environment 310 of the Japanese language, six string literals
of “20131226”, “G8-27, “EFLEARER », «“ ZA%s ”, “Hi#is 7,
and “##EFH ~ are displayed in a screen 312.

In the meantime, details of the object file 303 are also
represented in FIG. 3. The object file 303 contains at least an
RO section (read-only section) 306 which is a storage area
for the string literals and instructions 307, 308 and 309.
Details of the RO section 306 are represented in a right end
portion of FIG. 3.

Specifically, in the RO section 306, “20131226” is placed
in byte 0 to byte 7 and “G8-2" is placed in byte 8 to byte 11.
Further, in the RO section 306, “=+:#&AEF ” is placed in byte

10

15

20

25

30

35

40

45

50

55

60

65

14

12 to byte 21, “ &4~ is placed in byte 22 to byte 27,
“HiEHT ~ is placed in byte 28 to byte 33, and “ EfREH ” is
placed in byte 34 to byte 41.

The instruction 307 is an instruction for reading (that is,
loading) the start address on the memory of the object code
in a base register. Further, in FIG. 3 and other figures which
will be described later, the base register is represented as a
name of “BaseReg” and the start address on the memory of
the object code is represented as “StartAddr”.

The instruction 308 is an instruction for adding an offset
of the start address of the RO section 306 with respect to the
start address of the object code to the value maintained in the
base register and storing a result of the addition in the base
register. In FIG. 3 and other figures which will be described
later, the offset of the start address of the RO section with
respect to the start address of the object code is represented
as “Offset”.

The instruction 309 is an instruction for storing a value
obtained by adding the value maintained in the base register
and the number “34” in a register having the name of
“Regl”. That is, the instruction 309 is an instruction for
storing the start address on the memory of the string literal
having the name of “###&# ~ in the register Regl. The
instruction 309 is one of the plurality of instructions con-
tained in the sequence of instructions for outputting the
string literal having the name of “ ##%E4 ~ on the screen
312.

Further, in FIG. 3 and other figures which will be
described later, for convenience of explanation, the object
code is represented by an assembly language. However, the
object code is actually a code (e.g., a machine code) of a
machine language corresponding to the illustrated assembly
code.

In the meantime, in the second comparative example, the
programmer prepares a source file targeted for the English
language which contains the string literals written in the
English language in the development environment which is
targeted for the English language (not illustrated). In the
source file targeted for the English language, the string
literals of the Japanese language within the source file 301
are replaced by the string literals of the English language,
but both source files are the same on other points.

Specifically, two language independent string literals of
the “20131226” and “G8-2” are contained in the source file
targeted for the English language, similarly as in the source
file targeted for the Japanese language 301. Further, four
string literals written in the English language that have
meanings corresponding to four string literals written in
Japanese language contained in the source file 301 are also
contained in the source file which is targeted for the English
language. That is, four string literals of “Fujitsu Taro”, “Base
Salary”, “Responsibility Salary”, and “Length of Service”
are also in the source file targeted for the English language.

The programmer assigns the source file targeted for the
English language to the compiler 302 within the develop-
ment environment targeted for the English language as an
input. The compiler compiles the source file targeted for the
English language to generate an object file 320 of FIG. 4.

The object file 320 is linked with other object file by the
linker. As a result, the executable file (not illustrated)
targeted for the execution environment of English language
(not illustrated) is generated. When the executable file is
executed, six string literals of “20131226”, “G8-2”, “Fujitsu
Taro”, “Base Salary”, “Responsibility Salary”, “Length of
Service” are displayed on the screen.

In the meantime, details of the object file 320 are repre-
sented in FIG. 4. The object file 320 contains a RO section

US 9,430,197 B2

15

321, two instructions that are the same as the instructions
307 and 308, and an instruction 322 of which operand is
different from that of the instruction 309.

Specifically, in the RO section 321, the “20131226” is
placed in byte O to byte 7 and the “G8-2” is placed in byte
8 to byte 11. Further, in the RO section 321, “Fuyjitsu Taro”
having the meaning corresponding to “ ELmAAE ” is placed
in byte 12 to byte 23. Also, “Base Salary” having the
meaning corresponding to “ £#%5 ” is placed in byte 24 to
byte 34. Further, “Responsibility Salary” having the mean-
ing corresponding to “ Wi&#d ~ is placed in byte 35 to byte
55. Further, “Length of Service” having the meaning corre-
sponding to “ EiwmF# ~ is placed in byte 56 to byte 72.

The instruction 322 is an instruction for storing a value
obtained by adding the value maintained in the base register
and the number “56” in the register Regl. That is, the
instruction 322 is an instruction for storing the start address
on the memory of the string literal of the “Length of
Service” in the register Regl.

In the meantime, in the second comparative example, the
programmer prepares source file targeted for the Chinese
language which contains the string literals written in the
Chinese language in the development environment targeted
for the Chinese language (not illustrated). In the source file
targeted for the Chinese language, the string literal of the
Japanese language within the source file 301 is replaced by
the string literal of the Chinese language, but both source
files are the same on other points.

Accordingly, two language independent string literals of
the “20131226” and “G8-2” are also contained in the source
file targeted for the Chinese language. Further, four string
literals written in the Chinese language having meanings
corresponding to four string literals written in Japanese
language contained in the source file 301 are also contained
in the source file targeted for the Chinese language. That is,
four string literals of “EFL@ALR ”, “EFTLyE >, “HETHE 7,
and “ L& ” are also in the source file targeted for the Chinese
language. Further, although a person’s name of “ EL®mALE
is also represented in the same character between the Japa-
nese language and the Chinese language, a proper noun
which is represented by a different characters between the
Japanese language and the Chinese language exists in proper
nouns.

The programmer assigns the source file targeted for the
Chinese language to the compiler within the development
environment targeted for the Chinese language as an input.
By doing this, the compiler generates the object file 320 of
FIG. 4.

The object file 320 is linked with other object file by the
linker. As a result, the executable file (not illustrated)
targeted for the execution environment of Chinese language
(not illustrated) is generated. When the executable file is
executed, six string literals of “20131226”, “G8-27,
“CELRAR 7, “HHSITH , “HETH 7, and “ T~ are dis-
played on the screen.

In the meantime, details of the object file 320 are repre-
sented in FIG. 4. The object file 320 contains a RO section
331, two instructions that are the same as those instructions
307 and 308, and an instruction 332 of which operand is
different from that of the instruction 309.

Specifically, in the RO section 331, the “20131226” is
placed in byte O to byte 7 and the “G8-2” is placed in byte
8 to byte 11. Further, in the RO section 331, “E4i&#EE ~ of
the Chinese language having the meaning corresponding to
“ELEABE ” of the Japanese language is placed in byte 12
to byte 21. Also, “&#T# ” having the meaning correspond-

ing to “&FiF ” is placed in byte 22 to byte 29. Further,

25

40

45

55

60

16
“H#HIH > having the meaning corresponding to “HiE#E is
placed in byte 30 to byte 37. Further, “T# ” having the
meaning corresponding to “#i#EFH ~ is placed in byte 38 to
byte 41.

The instruction 322 is an instruction for storing a value
obtained by adding the value maintained in the base register
and the number “38” in the register Regl. That is, the
instruction 322 is an instruction for storing the start address
on the memory of the string literals of the “TI# ” in the
register Regl.

As will be known from the above descriptions, the only
difference between the instructions 309, 322, and 332 is just
the operand. The reason the operand is different between the
instructions 309, 322, and 332 is because the lengths of the
string literals of the plurality of languages that have mean-
ings corresponding to one another are not always the same.
As a result, the object files 303, 320, and 330 are different
from each other in the contents of the RO section for the
string literals as well as operands of several instructions
contained in the section for instructions. From a certain point
of view, the fact that “The contents of the RO section as well
as operands of instructions also depend on the language as
described above.” may also be regarded as a consequence of
the compilation process having been performed separately
for each language.

In the second comparative example, since the program-
mer prepares the source file for each language, a labor (e.g.,
a cost) required for preparing, maintaining and managing the
source file is relatively large. Further, in the second com-
parative example, since the compilation process is sepa-
rately performed for each language, a labor for the compi-
lation process is also required.

Subsequently, descriptions will be made on the third
comparative example with reference to FIG. 5. The third
comparative example is an example that can be considered
to be a method in order to overcome drawbacks of the first
and second comparative examples.

However, the compilation may fail with a simple method
such as the third comparative example. That is, the third
comparative example is unrealistic. In a certain aspect, one
of the objects of various embodiments intends to avoid the
failure as in, for example, the third comparative example.

In fact, a type of compiler which generates the object code
containing the RO sections illustrated in FIG. 3 and FIG. 4
has excellent advantages. Specifically, the type of compiler
has an effect that the “time taken to compile the source file
is reduced by simplifying the compilation process.” Details
of the effect will be described later.

However, it is difficult to overcome the disadvantages of
the first and second comparative examples without changing
(e.g., while maintaining the effect of time reduction) the
compilation scheme which achieves the effect of time reduc-
tion. The third comparative example is an example in which
overcoming (or avoiding) the difficulty fails.

In FIG. 5, a source file 401 which is the same as the source
file 301 of FIG. 3 is illustrated. Further, a compiler 402 and
an object file 403 are illustrated, and details of an RO section
404 within the object file 403 are also illustrated in FIG. 5.

One of the objects of the third comparative example is to
avoid a situation where the plurality of resource files 204,
205, and 206 are used at the time of execution as in the first
comparative example and also avoid another situation where
a plurality types of object files 303, 320, and 330 are
generated as in the second comparative example. A method
which may be considered to achieve the aim is to insert the
string literals of the plurality of languages in the single RO
section 404 of the object file 403.

US 9,430,197 B2

17

In FIG. 5, the RO section 404 which contains all of the
language independent string literals, the string literals of the
Japanese language, the string literals of the English lan-
guage, and the string literals of the Chinese language, is
illustrated. Specifically, the RO section 404 may be consid-
ered in which the string literals described above are placed
as follows.

Byte 0 to Byte 7: “20131226” (language independent
string literal)

Byte 8 to Byte 11: “G8-2” (language independent string
literal)

Byte 12 to Byte 21: “=x#&P ” (string literal of the
Japanese language)

Byte 22 to Byte 3: “Fuyjitsu Taro” (string literal of the
English language having meanings corresponding to string
literal placed in byte 12 to byte 21)

Byte 34 to Byte 43: “Ex&A8 ” (string literal of the
Chinese language having meanings corresponding to string
literal placed in byte 12 to byte 21)

Byte 44 to Byte 49: “ &#Fi# » (string literal of the Japanese
language)

Byte 50 to Byte 60: “Base Salary” (string literal of the
English language having meanings corresponding to string
literal placed in byte 44 to byte 49)

Byte 61 to Byte 68: “Z#L#% ” (string literal of the Chinese
language having meanings corresponding to string literal
placed in byte 44 to byte 49)

Byte 69 to Byte 74: “ Bi&#§ ” (string literal of the Japanese
language)

Byte 75 to Byte 79: “Responsibility Salary” (string literal
of the English language having meanings corresponding to
string literal placed in byte 69 to byte 74)

Byte 96 to Byte 103: “HE%T# ” (string literal of the
Chinese language having meanings corresponding to string
literal placed in byte 69 to byte 74)

Byte 104 to Byte 111: “#in&E# "~ (string literal of the
Japanese language)

Byte 112 to Byte 128: “Length of Service” (string literal
of the English language having meanings corresponding to
string literal placed in byte 104 to byte 111)

Byte 129 to Byte 132: “ T# * (string literal of the Chinese
language having meanings corresponding to string literal
placed in byte 104 to byte 111)

When it is possible for the compiler 402 to generate the
object file 403 containing the RO section 404 as described
above, the third comparative example will be more advan-
tageous than the first and second comparative examples.
However, it does not mean that it is sufficient as long as the
object file 403 simply contains the RO section 404 as
illustrated in FIG. 5. When the compiler 402 is unable to
generate a suitable instruction for referring to the string
literal within the RO section 404, the RO section 404 as
illustrated in FIG. 5 signifies nothing.

Also, a trial to enable “generation of the object file 403
containing the RO section 404 by modifying the compiler
having the effect of time reduction as described above” fails.
That is, the method considered in the third comparative
example leads nothing but to the failure of compilation.

This is because the suitable instruction for referring to the
string literals within the RO section 404 is not determined at
the time of compilation. The failure is represented by an
instruction 405 for which an operand is not determined in
FIG. 5. In the following, descriptions will be made more
specifically.

As described above, when the compilation process is
simplified, it becomes possible to reduce the time required
for compiling the source file. The simplification of the

5

10

15

20

25

30

35

40

45

50

55

60

65

18

compilation process means that the compiler (e.g., the
compiler 302 or 402) performs uniform operations regard-
less of the type of literal in the order in which the literals
appear in the source file (e.g., the source file 301 or 401).
Hereinafter, descriptions will be made on the effect of time
reduction using the compiler 302 and the source file 301 of
the second comparative.

Specifically, the compiler 302 simply translates the literal
in the order in which the literals appear in the source file 301
regardless of the type of literal. Also, the compiler 302
consecutively places the literals in the RO section 306 of the
object file 303 in the order in which the literals are trans-
lated.

That is, the compiler 302 does not change the order in
which the literals are translated based on the type of the
literal (e.g., a numeric value literal, a language independent
string literal, and a language dependent string literal). The
compiler 302 just translates the literals in the order in which
the literals appear in the source file 301.

Further, the compiler 302 also does not determine a
location where the literal is placed within the RO section 306
(in other words, a start address of each literal within the RO
section 306) based on the type of the literal. The compiler
302 simply places the literals in the RO section 306 con-
secutively in the order in which the literals appear in the
source file 301.

For example, it is assumed that 10 (ten) literals are
contained in the source file 301 and among the literals, a first
literal and a seventh literal are numeric value literals, a
second literal and a ninth literal are language independent
string literals, and a third literal to a sixth literal, an eighth
literal, and a tenth literal are language dependent string
literals. Even in this case, the translation order is not
replaced with, for example, a translation order in which “two
numeric value literals are translated at a first operation and
a second operation, two language independent string literals
are interpreted at a third operation and a fourth operation,
and six language dependent string literals are interpreted at
sixth operation to a tenth operation”. Further, even in this
case, the placement of literals based on the type of literals,
such as, the placement in which “two numeric value literals
are placed at a first operation and a second operation, two
language independent string literals are placed at a third
operation and a fourth operation, and six language depen-
dent string literals are placed at sixth operation to a tenth
operation” is not performed. In such a case, the compiler 302
simply translates an ith literal which appears in the source
file 301 at the ith operation and places the ith literal in the
RO section 306 at the ith operation (1=i<10).

According to the method that “the compiler 302 simply
translates the literals sequentially and places the literals in
the RO section 306 sequentially based only on the order in
which the literals appear in the source file 301 without
considering the type of literal” described above, the com-
pilation process is simplified. This is because the process of
determining the order in which the literals are placed or the
address based on the type of literal becomes unnecessary.
Also, the time taken to compile is reduced due to simplifi-
cation of the compilation process.

The compiler 402 of the third comparative example
translates the literals in the order in which the literals appear
in the source file 401 regardless of the type of literals in
order to achieve the effect of time reduction as described
above. Also, the compiler 402 intends to place the literals in
the RO section 404 in the sequence of literals having been
translated.

US 9,430,197 B2

19

More specifically, when the literal which appears at the ith
in the source file 401 is the type of language independent
literal, the compiler 402 simply places the ith literal in a next
location, which is a location after the previous literal is
placed, in the RO section 404. In contrast, when the ith
literal is the language dependent string literal, the compiler
402 places the ith literal in a next location, which is a
location after the previous literal is placed, in the RO section
404 and also places the string literal of other language
corresponding to the ith literal consecutively after the loca-
tion of the ith literal. By doing this, the compiler 402 is able
to place a plurality of literals including the literals corre-
sponding with each other between the plurality of languages
in the RO section 404 as illustrated in FIG. 5.

In the meantime, the fact that the literals are simply placed
in the RO section 404 signifies nothing. The matters that an
instruction for accessing the literal (e.g., for referring to the
literal within the RO section 404) is contained in the object
file 403 allows the literal within RO section 404 to be
qualified. However, the compiler 402 of the third compara-
tive example is not able to skillfully determine the instruc-
tion for referring to the literal.

The fact that the compiler 402 fails to generate the
instruction for referring to the literal is represented by the
instruction 405 in which an operand is not defined in FIG.
5. The instruction 405 for which an operand is not definitely
designated is also an instruction which is not defined and is
non-executable.

The cause of failure of the compilation process in the third
comparative example may be understood more easily by
comparing the second comparative example with the third
comparative example.

In the second comparative example, a string literal of a
language referenced at the time of execution is uniquely
decided at the time of compilation. For example, in a case
where the source file targeted for the Japanese language 301
is compiled, the fact that “when the executable file 311
generated from the object file 303 obtained by the compi-
lation is executed, the string literal of the Japanese language
is referenced” is decided at the time of compilation. Simi-
larly, in a case where the source file targeted for the English
language is compiled, the fact that “the string literal of the
English language is referenced at the time of execution” is
decided at the time of compilation. Similarly, in a case where
the source file targeted for the Chinese language is compiled,
the fact that “the string literal of the Chinese language is
referenced at the time of execution” is decided at the time of
compilation.

Therefore, the compiler 302 of the second comparative
example is able to decide an operand (e.g., an operand which
contains a numeric value of “34” in the instruction 309) of
an instruction for referring to the literal contained in the RO
section at the time of compilation. Accordingly, the compiler
302 of the second comparative example may also generate
a suitable instruction (e.g., the instruction 309).

For example, the source file 301 contains the string literal
of the Japanese language, but does not contain the string
literals of other languages, such as the string literal of the
English language or the string literal of the Chinese lan-
guage. Accordingly, the compiler 302 is able to decide that
“the string literal being referenced at the time of execution
is the string literal of the Japanese language that appears in
the source file 301 at the time of compiling the source file
301. That is, in the second comparative example, when the
compiler 302 compiles the source file 301, a possibility that
“the string literals of other languages, such as the string
literal of the English language or the string literal of the

10

15

20

25

30

35

40

45

50

55

60

65

20

Chinese language are referenced at an execution time of the
executable file 311” is excluded in advance.

Therefore, the compiler 302 is able to decide a suitable
operand for referring to the string literal of the Japanese
language and generate the instruction which contains the
suitable operand. For example, the compiler 302 is able to
decide the suitable operand of “[BaseReg+34]” for desig-
nating the start address of the string literal of the Japanese
language of “ ##xF# ~ in the RO section 306. Specifically,
the compiler 302 simply translates the literals in the order in
which the literals appear in the source file 301 and adds the
byte lengths of the literals sequentially such that the value of
“34” being contained in the operand may be decisively
obtained. Accordingly, the compiler 302 is able to generate
the instruction 309 which contains the operand.

Of course, the compiler 302 is able to decide a suitable
operand regarding other respective string literals exempli-
fied in the source file 301 and generate an instruction which
contains the operand. Therefore, the respective literals are
accurately referenced and displayed on the screen 312 at the
time of execution of the executable file 311.

Similarly, the compiler 302 is able to decide that “the
string literals being referenced at the time of execution is the
string literal of the English language” at the time of com-
piling the source file targeted for the English language (e.g.,
the source file described with reference to FIG. 4 which is
not illustrated). Therefore, the compiler 302 is able to decide
the suitable operand of “[BaseReg+56]” for designating the
start address of the string literal of the English language of,
for example, “Length of Service”, in the RO section 321.
Accordingly, the compiler 302 is able to generate the
instruction 309 which contains the operand.

Similarly, the compiler 302 is able to decide that “the
string literals being referenced at the time of execution is the
string literal of the Chinese language™ at the time of com-
piling the source file targeted for the Chinese language.
Accordingly, the compiler 302 is able to suitably decide an
operand of an instruction 332 and generate the instruction
332.

In the meantime, in the third comparative example, it is
uncertain whether which language is adopted in a string
literal that is referenced at the time of execution. The
indeterminacy described above is the cause of failure in
generating an instruction in the third comparative example.
Even when the compiler 402 is able to place the string
literals of the Japanese language, the English language, and
the Chinese language as in the RO section 404 of FIG. 5, the
compiler 402 fails to generate the suitable instruction for
referring to those string literals.

For example, the compiler 402 is able to place the string
literals of three types of languages in the RO section 404 by
making the string literals to correspond to the string literal
of the Japanese language of “#i&FH » contained in the
source file 401.

Byte 104 to Byte 111: the string literal of the Japanese
language of “ EmfEaEE »

Byte 112 to Byte 128: the string literal of the English
language of “Length of Service”

Byte 129 to Byte 132: the string literal of the Chinese
language of “ L#:

However, it is uncertain whether which one of three string
literals is referenced at the time of execution in the compiler
402. Accordingly, the compiler 402 is unable to determine
whether which one of three instructions is to be generated.

An instruction of “Mov Regl, [BaseReg+104]” for setting
the start address of the string literal of the Japanese language
of “EHaFH# in the register Regl

US 9,430,197 B2

21

An instruction of “Mov Regl, [BaseReg+112]” for setting
the start address of the string literal of the English language
of “Length of Service” in the register Regl

An instruction of “Mov Regl, [BaseReg+129]” for setting
the start address of the string literal of the Chinese language
of “ T#:” in the register Regl

As will be known from the examples described above, in
the third comparative example, even when the compiler 402
is able to place the string literals of the Japanese language,
the English language, and the Chinese language in the RO
section 404 as illustrated in FIG. 5, the compiler 402 is
unable to determine the operand of the instruction. As a
result, in the third comparative example, the compiler 402
fails to generate a valid instruction for referring to the string
literal. That is, in an approach such as the third comparative
example, generation of the object code containing the valid
instruction for referring to the string literal fails.

Accordingly, it is advantageous to take an approach other
than the third comparative example in order to overcome
disadvantages of the first comparative example and the
second comparative example. In the first embodiment
described above and the various embodiments which will be
described below, since an approach other than the third
comparative example is taken, the failure occurring as in the
third comparative example may be avoided. Further, accord-
ing to the first embodiment described above and the various
embodiments which will be described below, the disadvan-
tages of the first and second comparative examples are
overcome and the same effect of time reduction described
regarding the second and third comparative examples is
obtained. Effects of various embodiments including the first
embodiment will be described later again.

Descriptions will now be made on a second embodiment
with reference to FIG. 6 to FIG. 13. FIG. 6 is a diagram for
explaining a summary of a second embodiment. FIG. 6
illustrates a compiler 500, a source file 501 and a locale
resource file 502 that are received by the compiler 500 as
inputs, and an object file 503 output by the compiler 500
according to the second embodiment. Details of the com-
piler 500 will be described later.

The source file 501 is the same as the source file 301 of
FIG. 3 and the source file 401 of FIG. 5. Specifically, the
language independent string literals of “20131226” and
“(8-2”, the string literals of the Japanese language of
“CEDLELR 7, CERE T, “HEE”, and “EHREH ” are con-
tained in the source file 501.

A plurality of tuples of string literals that correspond to
the plurality of locales are stored in the locale resource file
502. Specifically, the locale resource file 502 of FIG. 6
corresponds to three types of locales identified by three
locale names of “en-us”, “zh-cn”, and “ja”. In other words,
the literal tuples which are combinations of the string literals
of three types of languages corresponding to three types of
locales are defined in the locale resource file 502.

Further, the locale name of “en-us” indicates the English
language used in the United States and corresponds to an
LCID (locale identifier) indicated by hexadecimal of
“0x0409”. Further, the “zh-cn” indicates the Chinese lan-
guage used in the People’s Republic of China and corre-
sponds to the LCID indicated by hexadecimal of “0x0804”.
Also, the “ja” indicates the Japanese language used in Japan
and corresponds to the LCID indicated by hexadecimal of
“0x0411”.

The LCID is an identifier for identifying the locale used
in the Windows (registered trademark) OS. API for acquir-
ing the LCID is also provided.

10

15

20

25

30

35

40

45

50

55

60

65

22

In the following, for convenience of explanation, it is
assumed that the locale is identified by the LCID, but a
similar identifier for identifying the locale is also used in an
OS other than the Windows (registered trademark) OS.
Accordingly, the second embodiment may be applied to an
OS regardless of an OS in a development environment or an
OS in an execution environment.

A data format of the locale resource file 502 may be
suitably defined according to the embodiment. In FIG. 6, for
convenience, the locale resource file 502 is represented in a
table format.

The names of locales corresponding to the languages that
the string literal are defined in the locale resource file 502 are
recorded in a header of the locale resource file 502. In the
example of FIG. 6, three locale names of “en-us”, “zh-cn”,
and “ja” are designated in the header. The LCID may be
designated in the header instead of the locale name.

Each record of the locale resource file 502 corresponds to
the tuple of the string literal. The identifier (e.g., an identi-
fication number in the example of FIG. 6) is allocated to
each record.

For example, the record allocated with an identification
number of “1” contains the string literal of the English
language of “Fujitsu Taro”, the string literal of the Chinese

language of “ =4:&ABE 7, and the string literal of the Japa-

nese language of “=4&4BE . These three string literals
have meanings that correspond to each other.

Further, the record allocated with an identification number
of “2” contains the string literal of the English language of
“Base Salary”, the string literal of the Chinese language of
“&F Ty 7, and the string literal of the Japanese language of
“BA4G . These three string literals have meanings that
correspond to each other.

Also, the record allocated with an identification number
of “3” contains the string literal of the English language of
“Responsibility Salary”, the string literal of the Chinese
language of “ER# T > and the string literal of the Japanese
language of “ H# . These three string literals have mean-
ings that correspond to each other.

Further, the record allocated with an identification number
of “4” contains the string literal of the English language of
“Length of Service”, the string literal of the Chinese lan-
guage of “T#” and the string literal of the Japanese
language of “##wF# . These three string literals have
meanings that correspond to each other.

Further, the locale resource file 502 may be physically a
set of a plurality of files according to the embodiment. For
example, the locale resource file 502 may be a set of the
following three files.

A file corresponding to the locale name of “en-us” (spe-
cifically, a file which contains the tuple consisting of the
string literal of the English language and the identification
number).

A file corresponding to the locale name of “zh-cn” (spe-
cifically, a file which contains the tuple consisting of the
string literal of the Chinese language and the identification
number)

A file corresponding to the locale name of “ja” (specifi-
cally, a file which contains the tuple consisting of the string
literal of the Japanese language and the identification num-
ber)

Further, the character encoding schemes (CES) of the
plurality of files may be different from each other. For
example, a shift JIS (Japanese industrial standard) may be

US 9,430,197 B2

23
used in the file corresponding to the locale name of “ja” and
the CES other than the shift JIS may be used in other two
files.

In contrast, the CESs of the plurality of file may be the
same. For example, UTF-8 (UCS transformation format 8,
where UCS is an abbreviation of universal multiple-octet
coded character set) may be used in the plurality of files.

Otherwise, a separate CES for each locale may be used in
a single locale resource file 502. The number of bytes
corresponding to a single character may differ depending on
the CES (for example, a character represented by 2 bytes in
the shift JIS may be represented by 3 bytes in the UTF-8).

The object file 503 contains an RO section in which the
string literals are placed and a plurality of instructions. The
RO section contains a portion for the language independent
string literals and a portion for the language dependent string
literals. On account of a paper space, only the RO section
and a single instruction are illustrated in FIG. 6. Details of
the plurality of instructions contained in the object file 503
will be described later with reference to FIG. 10 and FIG. 11.
The instruction illustrated in FIG. 6 is an instruction 837 of
FIG. 11.

The string literals that are commonly used regardless of
the locale are placed in the section for the language inde-
pendent string literals of the RO section of the object file 503
in the order in which the string literals appear in the source
file 501.

Specifically, the language independent string literal of
“20131226” appears first and thereafter, the language inde-
pendent string literal of “G8-2" appears in the source file
501. Accordingly, the string literal of “20131226” is placed
in byte 0 to byte 7 and the string literal of “G8-2” is placed
in byte 8 to byte 11 in the section for the language inde-
pendent string literals within the object file 503.

In the following, for convenience of explanation, a total
byte length of the language independent string literals con-
tained in the source file 501 is denoted by “X bytes”.
Accordingly, the length of the section in which the language
independent string literals are placed in the RO section of the
object file 503 is “X bytes”.

Further, in the second embodiment, the byte length of the
longest string literal of three string literals that belong to
each literal tuple defined in the locale resource file 502 is
used as the “calculation byte length” (see, e.g., descriptions
on the first embodiment) that corresponds to the correspond-
ing literal tuple. In the following, for convenience of expla-
nation, a total calculation byte length of all the literal tuples
defined in the locale resource file 502 by being corresponded
to the string literals that appear in the source file 501 is
denoted by “Y bytes”.

Accordingly, the length of the section in which the
language dependent string literals are placed is “3Y bytes”.
According to notation of FIG. 1, N=3, and Y=B1+...+BM
in FIG. 6.

In the following, for convenience of explanation, it is
assumed that the start address of the RO section is counted
from not “byte 17, but “byte 0”. Accordingly, the language
dependent string literals are placed in a range spanning from
byte “X” to byte “(X+3Y-1)" of the RO section of the object
file 503.

Specifically, as will be described below, the string literals
of the English language are placed in the range spanning
from byte “X” to byte “(X+Y-1)". Further, in the second
embodiment, the string literal having the length shorter than
the calculation byte length is padded with space characters
(details of which will be described later) and placed in the
RO section. In the example of FIG. 6, since each string

20

30

35

40

45

50

55

60

24

literal of the English language has the same length as the
corresponding calculation byte length, each string literal of
the English language is not padded with the space character.

Byte “(X+0)” to Byte “(X+11)”: “Fujitsu Taro”

Byte “(X+12)” to Byte “(X+22)”: “Base Salary”

Byte “(X+23)” to Byte “(X+43)”: “Responsibility Salary”

Byte “(X+44)” to Byte “(X+60)”: “Length of Service”

As will be described below, the string literals of the
Chinese language are placed in the range spanning from byte
“X+Y” to byte “(X+2Y-1)". Further, for convenience of
illustration, in FIG. 6 and FIG. 14 which will be described
later FIG. 14, the slanted-dotted lines are drawn in the cells
which represent the bytes padded with the space characters.

Byte “(X+Y+0)” to Byte “(X+Y+11)”: “ E@AHE”

Byte “(X+Y+12)” to Byte “(X+Y+22)": “ZE&Ig”

Byte “(X+Y+23)” to Byte “(X+Y+43)”: “HRÐ

Byte “(X+Y+44)” to Byte “(X+Y+60)”: “T#”

Further, as will be described below, the string literals of
the Japanese language are placed in the range spanning from
byte “(X+2Y)” to byte “(X+3Y-1)".

Byte “(X+2+0)” to Byte “(X+2Y+11)”: “EL&48E”

Byte “(X+2Y+12)” to Byte “(X+2Y+22)”: “ E#ig”

Byte “(X+2Y+23)” to Byte “(X+2Y+43)™: “ ks ”

Byte “(X+2Y+44)” to Byte “(X+2Y+60)”: “#zFsy

For example, the string literals placed in the ranges
spanning from byte “(X+23)” to byte “(X+43)”, byte “(X+
Y+23)” to byte “(X+Y+43)”, and byte “(X+2+23)” to byte
“(X+2Y +43) correspond to the string literal of the Japanese
language of “ W& > that appears in the source file 501. One
thing in common between the start addresses of byte “(X+
23)”, byte “(X+Y+23)”, and byte “(X+2Y+23)” of the string
literals of three languages is an offset of “23”. The reason the
offset is common is because the same number of calculation
bytes is allocated to three string literals that belong to each
literal tuple.

In FIG. 6, an instruction for which an operand (that is, an
operand of “[BaseReg+Reg2+23]”) which contains the com-
mon offset is designated is illustrated. In particular, as will
be described below, the value according to the locale in
execution is set in the register Reg2. Accordingly, the start
address of the string literal of a suitable language (that is, the
English language, the Chinese language, or the Japanese
language) according to the locale in execution is referenced
according to a common instruction of “Mov Reg3,
[BaseReg+Reg2+23]”. Unlike the third comparative
example where the operand is not defined, since the com-
piler 500 of the second embodiment is able to decide the
value of “23” at the time of compilation, the compiler 500
is able to generate the suitable instruction as described
above.

Further, a possibility that “other one or more string literals
that are language dependent or language independent are
also contained in the source file 501 is represented by
omission symbols, that is, dots arranged vertically in FIG. 6.
However, when other string literals that are not explicitly
represented in FIG. 6 are not contained in the source file 501,
X=8+4=12 and Y=12+11+21+17=61.

FIG. 7 is a block diagram illustrating a configuration of a
compiler according to the second embodiment. In FIG. 7, the
compiler 500, the source file 501 and the locale resource file
502 that are received by the compiler 500 as inputs are
illustrated. Further, the object file 503 output by the compiler
500, other object files 504 and 505, a linker 506, and an
executable file 507 are also illustrated in FIG. 7

Details of the source file 501 and the locale resource file
502 may be the same as, for example, those illustrated in

US 9,430,197 B2

25
FIG. 6. Further, details of the object file 503 may be the same
as, for example, that illustrated in FIG. 6 and those illus-
trated in FIG. 10 and FIG. 11 which will be described later.
The linker 506 links the object files 503, 504 and 505 to
generate the executable file 507.

The compiler 500 includes an analysis unit 600. The
analysis unit 600 includes a lexical analysis unit 601, a
syntactic analysis unit 602, and a semantic analysis unit 603.
The semantic analysis unit 603 includes a procedural opera-
tions analysis unit 604 and a literal registration unit 605. The
compiler 500 further includes an allocation unit 606 and an
object code generation unit 607. The object code generation
unit 607 includes a literal placement unit 608. The object
code generation unit 607 may include a code optimization
unit which is not illustrated.

Further, in FIG. 7, temporal data that are prepared and
used by the compiler 500 during execution of the compila-
tion process by the compiler 500 are illustrated. Specifically,
the compiler 500 prepares and uses a language independent
literal list 609. Further, as illustrated in FIG. 6, when the
string literals of the English language, the Chinese language,
and the Japanese language are defined in the locale resource
file 502, the compiler 500 prepares and uses a Japanese
language literal list 610, an English language literal list 611,
and a Chinese language literal list 612. Further, in particular,
as will be described below, the compiler 500 also prepares
and uses an offset list 613. Further, specific example of the
lists illustrated in FIG. 7 will be described later with
reference to FIG. 9.

Details of operations of the compiler 500 will be
described later with reference to FIG. 12 and FIG. 13, but the
summary thereof is as follows.

The lexical analysis unit 601 scans and analyzes the
source code written in the source file 501. That is, the lexical
analysis unit 601 recognizes a token string from the char-
acter string of the source code.

The syntactic analysis unit 602 parses the token string and
generates a parse tree according to the parsing of the token
string.

The semantic analysis unit 603 traverses the parse tree
and analyzes the meaning of the parse tree. Specifically, the
semantic analysis unit 603 prepares a list of symbols (e.g.,
names such as variable, constant, or function) that appear in
the source file 501 or a list of the literals. Further, the
semantic analysis unit 603 may perform a consistency check
such as a type check. As described above, since the analysis
performed by the semantic analysis unit 603 contains plural
kinds of processes, the semantic analysis unit 603 may
contain a plurality of modules. In FIG. 7, two (e.g., the
procedural operations analysis unit 604 and the literal reg-
istration unit 605) of the plurality of modules are illustrated.

The procedural operations analysis unit 604 may analyze
statements of the source code sequentially. For example, the
procedural operations analysis unit 604 may traverse the
parse tree in a suitable order (e.g., post-order). Accordingly,
the procedural operations analysis unit 604 may analyze, for
example, a nest structure between statements or a relation-
ship between a caller which calls a function and the function
called by the caller.

The literal registration unit 605 registers the literal that
appears in the source code in a suitable literal list. Further,
the literal registration unit 605 also registers an offset in the
offset list 613 at the time of registering the literal in the
literal list.

The allocation unit 606 performs an allocation of the
register (e.g., determines as to whether which register is to
be used for which instruction). Further, the allocation unit

10

15

20

25

30

35

40

45

50

55

60

65

26

606 also determines the number of bytes of each section
(e.g., the RO section for storing the literals or the section for
storing the sequence of instructions) within the object code.

Also, the object code generation unit 607 generates the
object code based on results of the processes performed by
the semantic analysis unit 603 and the allocation unit 606.
The object code generation unit 607 outputs the generated
object code as the object file 503. Further, the literal place-
ment unit 608 performs a process of placing the literal in the
RO section of the object code during generation of the object
code.

In the meantime, the compilers 500 of FIG. 6 and FIG. 7
may be an apparatus, specifically, a compile apparatus
implemented by a computer which executes a compiler
program. Specifically, the compile apparatus is an apparatus
which includes a generation unit (e.g., the object code
generation unit 607) which generates the object file 503
based on the source file 501 to be compiled and the locale
resource file 502 which defines the literal tuple.

Each unit such as the analysis unit 600 or the object code
generation unit 607 within the compiler 500 may be imple-
mented by executing a program module contained in the
compiler program by the computer. The computer which
executes the compiler program may be a computer 700 of
FIG. 8. Further, the compiler program is also referred to
simply as a compiler.

FIG. 8 is a diagram illustrating a hardware configuration
of the computer 700. The computer 700 includes a CPU
(Central Processing Unit) 701, a ROM (Read-Only
Memory) 702, a RAM (Random-Access Memory) 703, and
a communication interface 704. The computer 700 further
includes an input device 705, an output device 706, a storage
device 707, and a driving device 708 of a portable storage
medium 710. Respective components within the computer
700 are connected with one another via a bus 709.

Further, the computer 700 is connected to the network
711. The network 711 is, for example, the LAN (Local Area
Network), WAN (Wide Area Network), or Internet or a
combination thereof. Further, the program provider 712 may
be connected to the network 711. The program provider 712
is a computer for providing a program.

Although a single CPU 701 is illustrated in FIG. 7, the
computer 700 may be provided with a plurality of CPUs
701. Further, the CPU 701 may be a single core CPU or a
multicore CPU. The CPU 701 is an example of a processor.

The CPU 701 loads the program onto the RAM 703 and
executes the program while using the RAM 703 as a
working area. The ROM 702 may have stored firmware, for
example, BIOS (Basic Input Output System), therein.

The communication interface 704 is, for example, a wired
LAN interface circuit, a wireless LAN interface circuit, or
the combination thereof. The communication interface 704
may be an NIC (Network Interface Card) which may be
attached externally or an onboard type network interface
controller. For example, the communication interface 704
may include a circuit called a “PHY chip” which performs
processing at the physical layer and a circuit called a “MAC
chip” which performs processing at the sublayer of the MAC
(Media Access Control) layer.

The input device 705 is, for example, a keyboard, a
pointing device, a microphone, a camera, or a combination
of two or more thereof. The pointing device may be, for
example, a mouse, a touch pad, or a touch screen.

The output device 706 may be a display, a speaker, or a
combination thereof. The display may be a touch screen.

US 9,430,197 B2

27

The storage device 707 is a non-volatile device. Specifi-
cally, the storage device 707 is, for example, a HDD (Hard
Disk Drive), a SSD (Solid-State Drive) or a combination
thereof.

Example of a portable storage medium 710 may include
an optical disk such as a CD (Compact Disc) or a DVD
(Digital Versatile Disk), an opto-magnetic disk, a magnetic
disk, or a semiconductor memory card such as a flash
memory. The driving device 708 may be an optical disk
driving device, an opto-magnetic driving device, or a mag-
netic disk driving device. Otherwise, the driving device 708
may be a reader/writer for a memory card.

The compiler program for causing the computer 700 to
function as the compiler 500 may be installed in the storage
device 707 in advance. Otherwise, the compiler program
may be stored in the portable storage medium 710 to be
provided and read from the portable storage medium 710 by
the driving device 708 to be installed in the storage device
707. Otherwise, the compiler program may be provided by
the program provider 712, downloaded to the computer 700
through the network 711 and the communication interface
704, and installed in the storage device 707.

Further, all the ROM 702, the RAM 703, the storage
device 707, and the portable storage medium 710 are
example of tangible storage medium. Such a tangible stor-
age medium is a non-transitory medium such as signal
carrier wave.

When the compiler program is executed such that the
computer 700 functions as the compiler 500, the analysis
unit 600, the allocation unit 606, and the object code
generation unit 607 are implemented by the CPU 701.
Further, the language independent literal list 609, the Japa-
nese language literal list 610, the English language literal list
611, the Chinese language literal list 612, and the offset list
613 may be stored in the RAM 703, but may also be stored
in the storage device 707.

Further, the source file 501 and the locale resource file 502
may be stored in, for example, the storage device 707, in
advance. The compiler 500 may output the object file 503 to
the storage device 707. The object files 504 and 505 may
also be stored in the storage device 707.

The linker 506 is also implemented by causing the pro-
gram to be executed by the CPU 701. The linker 506 may
output the executable file 507 to the storage device 707. The
executable file 507 may be executed on the computer 700,
otherwise may be copied to other computer (for example,
computer of an end user) to be executed.

In the meantime, FIG. 9 is a table in which data used in
the second embodiment is illustrated. In FIG. 9, various lists
for a case where the source file 501 and the locale resource
file 502 illustrated in FIG. 6 are received by the compiler 500
as inputs are illustrated.

Specifically, each record of the language independent
literal list 609 includes six fields of “ID (identifier)”, “record
length”, “category”, “length”, “offset”, and “value”. The
“ID” is an identifier allocated to the record. The “record
length” indicates the length of record (e.g., a total of lengths
of six fields).

The language independent literal is stored in the “value”
field. The “category” indicates a type of literal. In the
example of FIG. 9, a category of a numerical literal is
represented by “1”, a category of a common alphanumeric
literal used without being dependent on the language is
represented by “2”, and a category of the language depen-
dent string literal is represented by “3”.

The byte length of the literal stored in the “value” field is
stored in the “length” field. Further, a total of values stored

10

15

20

25

30

35

40

45

50

55

60

65

28
in “length” fields of the first record to the (i-1)th record is
stored in the “offset” field of the ith record (1<i). The
“offset” of the ith record is O (zero).

In FIG. 9, an example in which the byte lengths of the
fields for “ID”, “record length”, “category”, “length”, and
“offset” are 6-byte, 2-byte, 2-byte, 2-byte, and 2-byte,
respectively, is illustrated.

Since the value of the first record is an 8-byte numeric
value literal of “20131226”, the record length, the category,
and the length for the first record are 22, 1, and 8, respec-
tively. Further, an ID of “A00001” is allocated to the first
record.

Since the value of the second record is a 4-byte numeric
value literal of “B8-2”, the record length, the category, and
the length for the second record are 18, 2, and 4, respec-
tively. Further, an ID of “A00002” is allocated to the second
record. The offset of the second record is 8.

The string literal of the Japanese language stored in the
locale resource file 502 is registered in the Japanese lan-
guage literal list 610. Each record of the Japanese language
literal list 610 includes four fields of “ID”, “record length”,
“category”, and “value”.

In FIG. 9, an example in which the byte lengths of the
fields for “ID”, “record length”, and “category” are 6-byte,
2-byte, and 2-byte, respectively, is illustrated. The category
of'each record is also “3” in the Japanese language literal list
610.

In the example of FIG. 9, the IDs of “B00001”, “B00002”,
“B00003”, and “B00004” are allocated in the first to the
fourth records of the Japanese language literal list 610,
respectively. Further, the string literals of the Japanese

language of “ E@AAE ”, « BA%5 7, “WiEis , and “ gitaEs
are stored in the value fields of the first to the fourth records,
respectively. The byte lengths of these four string literals are
10-byte, 6-byte, 6-byte, and 8-byte, respectively. Since the
value in the record length field indicates the length of the
record (e.g., a total length of four fields), the record length
of, for example, the third record is 16=6+2+2+6.

The string literal of the English language stored in the
locale resource file 502 is registered in the English language
literal list 611. The type of the English language literal list
611 is the same as that of the Japanese language literal list
610. The category of each record is also “3” in the English
language literal list 611.

In the example of FIG. 9, the IDs of “C00001”, “C00002”,
“C00003”, and “C00004” are allocated in the first to the
fourth records of the English language literal list 611,
respectively. Further, the string literals of the English lan-
guage of “Fuyjitsu Taro”, “Base Salary”, “Responsibility
Salary”, and “Length of Service” are stored in the value
fields of the first to the fourth records, respectively. The byte
lengths of these four string literals are 12-byte, 11-byte,
21-byte, and 17-byte, respectively.

The string literal of the Chinese language stored in the
locale resource file 502 is registered in the Chinese language
literal list 612. The type of the Chinese language literal list
612 is also the same as that of the Japanese language literal
list 610. The category of each record is also “3” in the
Chinese language literal list 612.

In the example of FIG. 9, the IDs of “D00001”,
“D00002”, “D00003”, and “D00004” are allocated in the
first to the fourth records of the Chinese language literal list
612, respectively. Further, the string literals of the Chinese
language of “ ELEAER 7, «“ BTy », “HLTH ”, and “ T#”
are stored in the value fields of the first to the fourth records,

US 9,430,197 B2

29

respectively. The byte lengths of these four string literals are
10-byte, 8-byte, 8-byte, and 4-byte, respectively.

In the meantime, as illustrated and described above, each
ID used in the list of the string literal of each language is a
combination of a prefix, for example, “B”, “C”, or “D”
according to the language and a suffix, for example,
“00002”, in the second embodiment. Also, in the second
embodiment, suffixes between the IDs of a plurality of string
literals having meanings that correspond to each other are
identical with each other.

For example, the string literal of the Japanese language
identified by the ID of “B00002”, the string literal of the
English language identified by the ID of “C00002”, and the
string literal of the Chinese language by the ID of “D00002”
are having the meanings that correspond to each other.
Further, each of the IDs of these three string literals contains
the common suffix of “00002”. The suffix of “00002”
corresponds to the second string literal among the language
dependent string literals that appear in the source file 501.

The suffix as described above is used as an ID which
identifies each record of the offset list 613. In addition to the
ID, each record of the offset list 613 contains fields of
“maximum length” and “offset”.

The maximum byte length of the plurality of string literals
identified by the ID (e.g., “B00002”, “C00002”, and
“D00002”) which contains the ID (for example, “00002”) of
the offset list 613 as the suffix is stored in the “maximum”
field of the offset list 613. The value stored in the “maxi-
mum” field is used as the “calculation byte length” described
with reference to FIG. 1.

Further, a total value of the “maximum” fields of the
records spanning from the first record to the (i-1)th record
is stored in the “offset” field of the ith record of the offset list
613 (1<i). The offset of the first record is 0 (zero).

For example, the ID of the first record is “00001”. That is,
the first record of the offset list 613 is made correspondence
with the record which is identified by the ID containing
suffixes of “00001” in each of the Japanese language literal
list 610, the English language literal list 611, and the Chinese
language literal list 612.

The byte lengths of three string literals of three languages
identified by the IDs of “B00001”, “C00001”, and
“D00001” are 10-byte, 12-byte, and 10-byte, respectively, as
described above. Accordingly, the value of “12” (e.g., the
maximum of three values of “10”, “12”, and “10”) is stored
in the “maximum length” field of the first record of the offset
list 613.

Further, the ID of the second record is “00002”. The value
of “11” (e.g., the maximum of three values of “6”, “11”, and
“8”) is stored in the “maximum length” field of the second
record. The value of “12 which is equal to the “maximum
length” of the first record is stored in the “offset” field of the
second record.

The ID of the third record is “00003”. The value of “21”
(e.g., the maximum of three values of “6”, “21”, and “8”) is
stored in the “maximum length” field of the third record. The
value of “23=12+11" which is the total of the values of the
“maximum length” fields of the first and the second records
is stored in the “offset” field of the third record.

The ID of the fourth record is “00004”. The value of “17”
(e.g., the maximum of three values of “8”, “17”, and “4”) is
stored in the “maximum length” field of the fourth record.
The value of “44=12+11+21" which is the total of the values
of the “maximum length” fields of the first, the second, and
the records is stored in the “offset” field of the fourth record.

The maximum length of the offset list 613 is an example
of the “calculation byte length” described with reference to

10

15

20

25

30

35

40

45

50

55

60

65

30

FIG. 1. According to the notation of FIG. 1, four maximum
lengths illustrated in FIG. 9 are represented by B1=12,
B2=11, B3=21, B4=17.

Further, for convenience of explanation, it is assumed that
an offset of the ith record of the offset list 613 is denoted by
Oi. The offset list 613 indicates that O1=0, 02=B1=12,
03=B1+B2=23, and O4=B1+B2+B3=44.

Subsequently, descriptions will be made on the sequence
of instructions that are contained in the object file 503. The
object file 503 contains the RO section in which the string
literals are placed as illustrated in FIG. 6. A section for
storing the sequence of instructions exists after the RO
section. FIG. 10 and FIG. 11 are views the sequence of
instructions generated in the second embodiment.

Further, actually, respective instructions contained in the
object file 503 are machine language instructions contained
in a predetermined instruction set. However, in order to help
understanding, an assembly code which corresponds to the
machine code is represented in FIG. 10 and FIG. 11. The
assembly code is also represented in FIG. 15, which will be
described later, similarly as in FIG. 10 and FIG. 11.

The compiler 500 (e.g., the object code generation unit
607) may generate the assembly code illustrated in FIG. 10
and FIG. 11 first and thereafter, may convert the generated
assembly code into the machine code. Depending on the
embodiments (e.g., depending on a command option
assigned to the compiler 500), the compiler 500 may gen-
erate an assembly code file instead of the object file 503
written in the machine language.

In FIG. 10, a label 800 of “. TXT Section” indicates that
the section for sequence of instructions begins and a label
800 of “Prologue” indicates that the prologue begins. The
sequence of instructions for initialization is contained in the
prologue.

In the prologue, a portion spanning from a label 802 of
“LocaleJudgment” to a label 823 of “EndlLocaleJudgment”
corresponds to a process of storing the value according to the
locale in execution in a register. Details of which are as
follows.

The instruction 803 is an LEA (Load Effective Address)
instruction for loading an address designated by the second
operand onto the register Reg0. In FIG. 10, the second
operand represented as “GetlLocaleReturnAddr” for conve-
nience is an address which indicates the section in which a
return value of an API function for acquiring an LCID is
stored.

The instruction 804 indicates a subroutine call which calls
the API function for acquiring an LCID. The instruction 805
is executed after the API function is executed.

The instruction 805 is an instruction for loading the value
stored in a location of the address (that is, address repre-
sented by “GetlLocaleReturnAddr” for convenience in FIG.
10) maintained in the register Reg0 onto the register Regl.
Due to execution of the instruction 805, the value of the
LCID in an execution environment is stored in the register
Regl.

In the meantime, the string literals used in three locales
that are identified by the locale names of “en-us”, “zh-cn”,
and “ja”, respectively, are defined in the locale resource file
502 of FIG. 6. Three labels 806, 811, and 816 that corre-
spond to these three locales are represented in FIG. 10.

In FIG. 10, subsequent to the label 806 of “English”, the
instructions 807, 808, 809, and 810 for a process of “check-
ing whether the LCID in execution is equal to the value of
“0x0409” and setting O (zero) in the register Reg2 when both
are equal to each other” are placed. The “0x0409” is the
LCID which corresponds to the locale name of the “en-us”.

US 9,430,197 B2

31

The instruction 807 is an instruction for comparing the
value of the register Regl (e.g., LCID in execution) with the
value of “0x0409”. The next instruction 808 is a conditional
branch instruction (e.g., conditional jump instruction) for
jumping to the label 811 of “Chinese” when the two values
that are compared by the instruction 807 are not equal to
each other.

When the value of the register Regl is equal to the value
of “0x0409”, the instruction 809 is executed. The instruction
809 is an instruction for setting the value of 0 (zero) in the
register Reg2. The instruction 810 placed after the instruc-
tion 809 is an unconditional branch instruction (e.g., uncon-
ditional jump instruction) to jump to the label 823 of
“EndLocaleJudgment”.

A portion spanning from the label 811 to the instruction
815 is similar to the portion spanning from the label 806 to
the instruction 810. Specifically, subsequent to the label 811
of “Chinese”, the instruction 812 for comparing the value of
the register Regl (e.g., the LCID in execution) with the
value of “0x0804” (e.g., LCID corresponding to the locale
name of “zh-cn”) is placed. The next instruction 813 is a
conditional branch instruction for jumping to the label 816
of “Japanese” when the two values that are compared by the
instruction 812 are not equal to each other.

When the value of the register Regl is equal to the value
of “0x0804”, the instruction 814 is executed. The instruction
814 is an instruction for setting the value of 1 (one) in the
register Reg2. The instruction 815 which is placed after the
instruction 814 is an unconditional branch instruction which
is the same as the instruction 810.

A portion spanning from the label 816 to the instruction
820 is also similar to the portion spanning from the label 806
to the instruction 810. Specifically, subsequent to the label
816 of “Japanese”, the instruction 817 for comparing the
value of the register Regl (e.g., the LCID in execution) with
the value of “0x0411” (e.g., LCID corresponding to the
locale name of “ja”) is placed. The next instruction 818 is a
conditional branch instruction for jumping to the label 821
of “Others” when the two values that are compared by the
instruction 817 are not equal to each other.

When the value of the register Regl is equal to the value
of “0x0411”, the instruction 819 is executed. The instruction
819 is an instruction for setting the value of 2 (two) in the
register Reg2. The instruction 820 which is placed after the
instruction 819 is an unconditional branch instruction which
is the same as the instruction 810.

A default operation for a case where the LCID in execu-
tion is not equal to any value of “0x0409”, “0x0804”, and
“0x0411” is designated after the instruction 820. Specifi-
cally, subsequent to the label 821 of “Others”, the instruction
822 for setting the value of 0 (zero) in the register Reg2 is
placed. The instruction 822 is the same as the instruction
809.

That is, according to the instruction 822, when the LCID
in execution is not equal to any one of “0x0409”, “0x0804”,
and “0x0411”, the string literal of the English language is
used. The reason the object code generation unit 607 gen-
erates the instruction 822 described above is because the
Latin alphabet used in the English language is able to be
used in any environment. That is, the compiler 500 of the
second embodiment determines that the default language is
the English language and the object code generation unit 607
generates an instruction based on the determination.

The label 823 of “EndLocaleJudgment” is placed after the
instruction 822. As will be seen from the above descriptions,
when the locale which is represented as the jth locale in the
header row of the locale resource file 502 is identical with

30

40

45

32

the locale in the execution environment, the value of “(j-1)"
is set in the register Reg2 (1x<j). Further, when the locale in
the execution environment is not identical with any of
locales represented in the header row of the locale resource
file 502, the default value is set in the register Reg2. The
default value in the second embodiment is the value for the
locale which uses the English language (that is, 0).

The label 824 of “StartProcedure” which indicates that the
procedural operation begins is placed after the prologue. In
FIG. 11, the instruction 825 to the instruction 844 that
correspond to four DISPLAY statements within the source
file 501 of FIG. 6 are illustrated.

The instruction 825 is an instruction for multiplying the
value stored in the register Reg2 with “Y” (e.g., a total of
values stored in the “maximum length” field of the offset list
613) and storing the multiplication result in the register
Reg2. The instruction 826 is an instruction for adding the
value stored in the register Reg2 and “X” (e.g., a total of
values stored in the “length” field of the language indepen-
dent literal list 609) and storing the addition result in the
register Reg2.

Further, the instruction 827 is a load instruction for setting
the start address on the memory at the time of execution of
the object code stored in the object file 503 in the base
register. The start address is represented as “StartAddr” in
FIG. 11.

The next instruction 828 is an instruction for adding the
value stored in the base register and an offset which extends
from the top of the object code to the top of the RO section
and storing the addition result in the base register. The values
set in the register Reg2 and the base register by the instruc-
tions 825, 826, 827, and 828 are used in the instructions 829,
833, 837, and 841.

The instructions 829, 830, 831, and 832 are instructions
for displaying the string literals according to the locale in
execution which correspond to the first language dependent
string literal of “ EXH&AEE ” written in the source file 501.

According to the offset list 613 of FIG. 9, the offset which
corresponds to the first language dependent string literal is
0 (zero). Accordingly, the object code generation unit 607
reads the value of 0 (zero) from the “offset” field of the first
record of the offset list 613 and generates the instruction 829
using the read value.

The instruction 829 is an instruction for setting a total of
the value stored in the base register, the value stored in the
register Reg2, and 0 (zero) in the register Reg3.

Here, for convenience of explanation, the value (e.g., the
value of “0”, “1”, or “2” according to the locale in execu-
tion) set in the register Reg2 by the instruction 809, 814,
819, or 822 is represented as “r”. Further, as described with
reference to FIG. 9, the offset Oi, which correspond to the
string literal which appears ith within the source file 501
among the language dependent string literals, is 0 for i=1
and (B1+ ... Bi-1) for 1<i.

Further, for simplification of explanation, the expression
of “the string literal which appears ith within the source file
501 among the language dependent string literals” may be
simply described as the “ith string literal.” The above
matters for the simplicity of descriptions are the similarly
applied to the third embodiment which will be described
later. Further, a literal tuple to which the string literal
appearing ith within the source file 501 belongs is defined as
the locale resource file 502, and a plurality of string literals
written in a plurality of languages belong to the literal tuple.
Among the plurality of string literals, the string literal of the
language according to the locale in execution may be simply
described as the “ith string literal of the language according

US 9,430,197 B2

33

to the locale in execution.” The above matters for the
simplicity of descriptions are the similarly applied to the
third embodiment which will be described later.

Accordingly, as will be known from FIG. 6, FIG. 9, FIG.
10, and FIG. 11, the start address Ai of the ith string literal
of the language according to the locale in execution is
represented as Equation (1). Further, the “language accord-
ing to the locale in execution” is the English language when
the LCID in the execution environment is “0x0409”, the
Chinese language when the LCID in the execution environ-
ment is “0x0804”, the Japanese language when the LCID in
the execution environment is “0x0411”, and the default
language (e.g., the English language) when the L.CID in the
execution environment is a value other than the value of
“0x04097, “0x0804”, and “0x0411”

Ai=StartAddr+Offset+X+# Y+ Oi (€8]

The instruction 829 is an instruction for calculating the
start address A1 of the first string literal of language accord-
ing to the locale in execution and setting the start address Al
in the register Reg3. That is, the start address Al is refer-
enced based on the execution result of the instruction 829.

In the following, for convenience of explanation, it is
assumed that a subroutine for displaying the string literal on
the screen is the following subroutine.

A subroutine which takes a start address and a length of
a string to be displayed as two arguments

A subroutine which takes a value set in a first predeter-
mined register (hereinafter, referred to as “register Dis-
pRegl”) as a first argument (that is, an argument indicating
the start address of the string literal)

A subroutine which takes a value set in a second prede-
termined register (hereinafter, referred to as “register Dis-
pReg2”) as a second argument (that is, an argument indi-
cating the length of the string literal)

Accordingly, the instruction 830 is an instruction for
copying the value stored in the register Reg3 to the register
DispRegl and the instruction 831 is an instruction for
copying the byte length of “12” to the register DispReg2.
The object code generation unit 607 reads the value of “12”
from the “maximum length” field of the first record of the
offset list 613 and generates the instruction 831 using the
read value. The instruction 832 is an instruction for calling
the subroutine.

The instructions 833, 834, 835, and 836 are instructions
for displaying the string literal according to the locale in
execution that corresponds to the second language depen-
dent string literal of “ Z&74#5 > written in the source file 501.
For example, the instruction 833 is an instruction for setting
the start address A2 of the second string literal according to
the locale in execution in the register Reg3 and the start
address A2 is referenced based on the execution result of the
instruction 833.

The instructions 833, 834, 835, and 836 are similar to the
instructions 829, 830, 831, and 832. The only difference
between the instructions 833 to 836 and the instructions 829
to 832 is the operand.

Specifically, since the values of the “offset” field and the
“maximum length” field of the second record of the offset
list 613 are “12” and “11”, respectively, the value of “12” is
contained in the operand of the instruction 833 and the value
of “11” is designated as the operand of the instruction 835.
That is, the object code generation unit 607 generates the
instructions 833 and 835 based on the second record of the
offset list 613.

The instructions 837, 838, 839, and 840 are instructions
for displaying the string literal according to the locale in

10

15

20

25

30

35

40

45

50

55

60

65

34

execution that corresponds to the third language dependent
string literal of “ #iF#% ~ written in the source file 501. For
example, the instruction 837 is an instruction for setting the
start address A3 of the third string literal according to the
locale in execution in the register Reg3 and the start address
A3 is referenced based on the execution result of the
instruction 837.

The instructions 837, 838, 839, and 840 are similar to the
instructions 829, 830, 831, and 832. The only difference
between the instructions 837 to 840 and the instructions 829
to 832 is the operand.

Specifically, since the values of the “offset” field and the
“maximum length” field of the third record of the offset list
613 are “23” and “21”, respectively, the value of “23” is
contained in the operand of the instruction 837 and the value
of “21” is designated as the operand of the instruction 839.
That is, the object code generation unit 607 generates the
instructions 837 and 839 based on the third record of the
offset list 613.

The instructions 841, 842, 843, and 844 are instructions
for displaying the string literal according to the locale in
execution that corresponds to the fourth language dependent
string literal of “ E#%4F# » written in the source file 501. For
example, the instruction 841 is an instruction for setting the
start address A4 of the fourth string literal according to the
locale in execution in the register Reg3 and the start address
A4 is referenced based on the execution result of the
instruction 841.

The instructions 841, 842, 843, and 844 are also similar
to the instructions 829, 830, 831, and 832. The only differ-
ence between the instructions 841 to 844 and the instructions
829 to 832 is the operand.

Specifically, since the values of the “offset” field and the
“maximum length” field of the fourth record of the offset list
613 are “44” and “17”, respectively. The value of “44” is
contained in the operand of the instruction 841 and the value
of “17” is designated as the operand of the instruction 843.
That is, the object code generation unit 607 generates the
instructions 841 and 843 based on the fourth record of the
offset list 613.

As will be seen from FIG. 10 and FIG. 11, according to
the second embodiment, the object code generation unit 607
is able to decide the operands of the instructions 829, 833,
837, and 841 (e.g., the start address of the string literal which
depends on the locale in execution) at the time of compila-
tion. That is, the problem occurring in the third comparative
example that “Since the operand is unable to be decided at
the time of compilation, the compilation process fails.” does
not occur in the second embodiment.

Supplementary explanations about the reason why the
problem occurring in the third comparative example is
avoided in the second embodiment are as follows. In the
second embodiment, the same byte length (e.g., the value of
the “maximum length” field of the offset list 613) is allo-
cated to the plurality of string literals that belong to a single
literal tuple. As a result, it becomes possible to compute the
start address of the string literal according to the locale in
execution by using a common value (e.g., the value of “12”
in the instruction 833) which does not depend on the locale
in execution as an offset. Since the common value is decided
at the time of compilation, the problem occurring in the third
comparative example is avoided in the second embodiment.

In the meantime, FIG. 12 is a flowchart illustrating a
literal list preparation process performed by the compiler of
the second embodiment. The process of FIG. 12 is executed
by the semantic analysis unit 603 after a lexical analysis by
the lexical analysis unit 601 and a syntactic analysis by the

US 9,430,197 B2

35

syntactic analysis unit 602 are completed. For example,
when the source file 501 and the locale resource file 502 of
FIG. 6 are input, the semantic analysis unit 603 executes the
process of FIG. 12 to generate five lists of FIG. 9.

At step S101, the procedural operations analysis unit 604
determines whether the analysis has been performed to the
last statement. For example, the procedural operations
analysis unit 604 may traverse the parse tree in a post-order.
When traversal for the entire parse tree has been completed,
the analysis to the last statement has been finished.

When the analysis has been performed to the last state-
ment, the process of FIG. 12 is also completed. In contrast,
when an unanalyzed statement remains, the process of FIG.
12 proceeds to step S102.

Also, at step S102, the procedural operations analysis unit
604 reads the next statement (e.g., data of a subtree corre-
sponding to the next statement).

Further, the statements may be nested with each other
within the source code. The word of “next” in the expression
of “next statement” means “next” in the order in which the
parse tree is traversed by the procedural operations analysis
unit 604.

At step S103, the procedural operations analysis unit 604
determines whether the string literal exists among the state-
ment read at step S102. When it is determined that the string
literal does not exist among the statement read at step S102,
the process of FIG. 12 goes back to step S101.

In contrast, when it is determined that the string literal
exists among the statement read at step S102, the literal
registration unit 605 performs processing of step S104 to
step S111. In the following, for convenience of explanation,
the string literal of the statement read at step S102 is referred
to as the “current string literal”.

Specifically, at step S104, the literal registration unit 605
determines whether the current string literal is the language
dependent string literal. A specific scheme of determination
performed at step S104 may be different depending on the
embodiment.

For example, in the example of FIG. 6, the compiler 500
is a COBOL compiler. Also, as illustrated in the source file
501 of FIG. 6, in COBOL,, it is possible to indicate that the
string literal is the language dependent string literal (e.g., the
national literals) by marking the token of “N” ahead of the
string literal. Accordingly, the literal registration unit 605
may perform the determination processing of step S104
based on the specification of the programming language
(e.g., according to whether the token of “N” is present or
not).

Otherwise, the literal registration unit 605 may refer to the
locale resource file 502 so as to perform the determination
processing of step S104.

For example, it is assumed that the current string literal is
the string literal of “G8-2 among the source file 501 of FIG.
6. In this case, the literal registration unit 605 retrieves the
string literal of “G8-2” in the Japanese language column of
the locale resource file 502. As a retrieval result, since the
string literal of “G8-2” is not found, the literal registration
unit 605 determines that the string literal of “G8-2” is the
language independent string literal”.

As a separate example, it is assumed that the current string
literal is the string literal of “ &4 > among the source file
501 of FIG. 6. In this case, the literal registration unit 605
retrieves the string literal of “Z7#5 ™ in the Japanese
language column of the locale resource file 502. As a
retrieval result, since the string literal of “ 445 is found,
the literal registration unit 605 determines that the string
literal of “ &7 ” is the language dependent string literal”.

10

20

25

30

40

45

55

36

Further, the literal registration unit 605 is able to deter-
mine whether which language column within the locale
resource file 502 is to be retrieved by a suitable method
according to the embodiment.

For example, the locale name may be designated as a
command option for the compiler 500. In this case, the literal
registration unit 605 retrieves the column (e.g., the Japanese
language column when “ja” is designated) which corre-
sponds to the designated locale name within the locale
resource file 502.

As a separate example, the compiler 500 may acquire the
name of the locale in an environment in which the source file
501 is developed through the API provided by an OS. In this
case, the literal registration unit 605 retrieves the column
(e.g., the Japanese language column when “ja” is acquired)
which corresponds to the acquired locale name within the
locale resource file 502.

As another example, the compiler 500 (e.g., the lexical
analysis unit 601) may analyze the source file 501 so as to
determine the character encoding scheme (CES) used in the
source file 501. A known analysis scheme for determining
the character encoding scheme of the file may be utilized.
Further, the compiler 500 may include a correspondence
table between a locale name and a character encoding
scheme. In this case, the compiler 500 may recognize the
locale name, which corresponds to the character encoding
scheme recognized by the analysis, based on the correspon-
dence table.

For example, it is assumed that the character encoding
scheme utilized in the source file 501 is the shift JIS. Since
the shift JIS is the character encoding scheme for the
Japanese language, the shift JIS and the locale name of “ja”
correspond to each other in the correspondence table.
Accordingly, in this case, the literal registration unit 605
retrieves the Japanese language column within the locale
resource file 502 according to the locale name of “ja”
recognized by the compiler 500 based on the correspon-
dence table.

As described above, there are various specific methods for
the determination of step S104. However, at step S104, the
literal registration unit 605 determines whether the current
string literal is the language dependent string literal.

When it is determined that the current string literal is the
language independent string literal, the literal registration
unit 605 registers the current string literal in the language
independent literal list 609 at step S105. For example, when
the current string literal is the string literal of “G8-2”, the
second record of the language independent literal list 609 of
FIG. 9 is newly prepared and added by the literal registration
unit 605. The process of FIG. 12 goes back to step S101 after
step S105.

In contrast, when it is determined that the current string
literal is the language dependent string literal, step S106 to
step S111 are executed.

At step S106, the literal registration unit 605 adds a new
record to the offset list 613. The literal registration unit 605
allocates a new ID to the added record and initializes the
value stored in the maximum length field of the added record
to 0 (zero). Further, a suitable value is set in the offset field
in a process of FIG. 13 which will be described later. For
example, when the current string literal is the string literal of
“Zt@AER”, the first record is added in the offset list 613.

Next, at step S107, the literal registration unit 605 deter-
mines whether an unselected language for the current string
literal remains among the languages that string literals are
stored in the locale resource file 502.

US 9,430,197 B2

37

For example, in the example of FIG. 6, the “languages
that the string literals are stored in the locale resource file
502” are three languages, specifically, the English language,
the Chinese language, and the Japanese language. Accord-
ingly, the literal registration unit 605 determines whether an
unselected language for the current string literal remains
among the English language, the Chinese language, and the
Japanese language.

When it is determined that the unselected language does
not remain (e.g., when all the languages have been selected),
the process of FIG. 12 goes back to step S101. In contrast,
when the unselected language remains, the process of FIG.
12 goes back to step S108.

At step S108, the literal registration unit 605 selects one
of the unselected languages among the languages that the
string literals are stored in the locale resource file 502. Also,
the literal registration unit 605 reads the string literal, which
has the meaning corresponding to the current string literal
and is written in the selected language, from the locale
resource file 502.

For example, it is assumed that the current string literal is
the string literal of “ ###EE > among the source file 501. In
this case, at step S108, when the English language is
selected, the literal registration unit 605 reads “Length of
Service”, which is the string literal of the English language
corresponding to the string literal of “ &R ”, from the
locale resource file 502. That is, the literal registration unit
605 reads the string literal of “Length of Service” from the
English language field which is contained in the same record
as the current string literal.

As a separate example, when the Japanese language is
selected at step S108, the literal registration unit 605 may
actually omit referring to the locale resource file 502. This
is because the “ E#EF# ~ itself which is the current string
literal is a character string written in the selected language.
That is, the literal registration unit 605 may regard the
current string literal found out at step S103 as “the string
literal read from the locale resource file 502 at step S108”.

Also, at step S109, the literal registration unit 605 deter-
mines whether the byte length of the string literal read at step
S108 is longer than the byte length indicated by the maxi-
mum length field of the record added at step S106. When it
is determined that the byte length of the read string literal is
longer than the byte length indicated by the maximum length
field, the process of FIG. 12 proceeds to step S110, and
otherwise, the process of FIG. 12 proceeds to step S111.

At step S110, the literal registration unit 605 writes the
byte length of the string literal read at step S108 into the
maximum length field of the record added at step S106.
Accordingly, the literal registration unit 605 suitably updates
the maximum length. The process of FIG. 12 proceeds to
step S111 after update at step S110.

At step S111, the literal registration unit 605 registers the
string literal read at step S108 in the literal list of the
language selected at step S108. Details thereof will be
described later. The process of FIG. 12 goes back to step
S107 after registration at step S111. By a loop process
consisting of step S107 to step S111, the string literal of each
language having meaning that corresponds to the current
string literal is registered in the literal list of each language.

For example, it is assumed that the current string literal
found out at step S103 is “ EEFH . In this case, at step
S106, the fourth record of the offset list 613 is added. The
literal registration unit 605 issues a new 1D of “00004” for
the added record, allocates the issued ID of “00004” to the
added record, and initializes the value stored in the “maxi-
mum length” field to O (zero).

20

30

40

45

50

55

38

Further, for convenience of explanation, for example, it is
assumed that the literal registration unit 605 selects the
language in the order of the Japanese language, the English
language, the Chinese language. The order in which the
language is selected by the literal registration unit 605 is
arbitrary.

In a case of the selection order described above, the
Japanese language is selected in the first execution of step
S108 regarding the current string literal of “ st ™.
Accordingly, the string literal of the Japanese language of
“EWREL ” is obtained in the first execution of step S108
regarding the current string literal.

The byte length of the string literal of the Japanese
language of “ Eimstl ™ is “8” and “8” is greater than “0”.
Accordingly, at step S110, the value stored in the “maximum
length” field of the fourth record of the offset list 613 is
updated with 8.

Also, at step S111, the string literal of the Japanese
language of “ B FH ” is registered in the Japanese language
literal list 610. Specifically, the fourth record of the Japanese
language literal list 610 of FIG. 9 is newly added. Further,
the literal registration unit 605 allocates the ID of “B00004”,
which contains the ID of “00004” issued at step S106 as a
suffix, to the new record, and computes a record length based
on the byte length of the string literal of “Eiu& . As a
result, the record as illustrated in FIG. 9 is added.

Subsequently, the English language is selected in the
second execution of step S108 regarding the current string
literal. Accordingly, the string literal of the English language
of “Length of Service” is obtained in the second execution
of step S108 regarding the current string literal.

The byte length of the string literal of the English lan-
guage of “Length of Service” is “17” and “17” is greater
than “8”. Accordingly, at step S110, the value stored in the
“maximum length” field of the fourth record of the offset list
613 is updated with “17”.

Also, at step S111, the string literal of “Length of Service”
is registered in the English language literal list 611. Spe-
cifically, the fourth record of the English language literal list
611 of FIG. 9 is newly added. Further, the literal registration
unit 605 allocates the ID of “C00004”, which contains the
1D of “00004” issued at step S106 as a suffix, to the new
record, and computes the record length based on the byte
length of the string literal of “Length of Service”. As a result,
the record as illustrated in FIG. 9 is added.

Subsequently, the Chinese language is selected in the third
execution of step S108 regarding the current string literal.
Accordingly, the string literal of the Chinese language of
“Ift ” is obtained in the third execution of step S108
regarding the current string literal. The byte length of the
string literal of the Chinese language of “I# ” is “4” and
“4” is not greater than “17”. Accordingly, step S110 is
skipped.

Also, at step S111, the string literal of “T# ” is registered
in the Chinese language literal list 612. Specifically, the
fourth record of the Chinese language literal list 612 of FIG.
9 is newly added. Further, the literal registration unit 605
allocates the ID of “D00004”, which contains the ID of
“00004” issued at step S106 as a suffix, to the new record,
and computes the record length based on the byte length of
the string literal of “T# ”. As a result, the record as
illustrated in FIG. 9 is added.

Also, the literal registration unit 605 determines that the
“unselected language does not exist” in the fourth execution
of step S107 regarding the current string literals. As a result,
the process of FIG. 12 goes back to step S101.

US 9,430,197 B2

39

Further, for simplicity of explanation, a flowchart for a
case where the number of string literals contained in a single
statement is one at maximum in FIG. 12. When two or more
string literals are contained in a single statement, the deter-
mination of step S104 is performed regarding each string
literal contained in the statement read at step S102. Also,
regarding each string literal, step S105 is executed or step
S106 to step S111 are executed according to the determina-
tion result at step S104.

In the meantime, the allocation unit 606 performs a
suitable processing such as allocation of registers or com-
putation of the number of bytes of each section after the
process of FIG. 12 as described above is completed. There-
after, the object code generation unit 607 generates the
object code.

The process of FIG. 13 is one of a series of processes
performed by the object code generation unit 607 in order to
generate the object code. Specifically, FIG. 13 is a flowchart
illustrating an RO section preparation process performed by
the compiler 500 of the second embodiment. More specifi-
cally, FIG. 13 is a flowchart of a process of preparing the
section, in which the language dependent string literals are
stored, by the literal placement unit 608 of the object code
generation unit.

At step S201, the literal placement unit 608 computes the
offset stored in the offset list 613 using the maximum length
stored in the offset list 613. Specifically, the literal placement
unit 608 sets the value of the “offset” field of the first record
of the offset list 613 to 0 (zero). Further, regarding each i
which satisfies 1<i, the literal placement unit 608 computes
the total of the values of the “maximum length” field and the
“offset” field of the (i-1)th record of the offset list 613, and
sets the computed total in the “offset” field of the ith record.
As a result, as illustrated in FIG. 9, the value is set in the
“offset” field of each record of the offset list 613.

Next, at step S202, the literal placement unit 608 deter-
mines whether the language (e.g., the unselected language)
that the string literal which is not yet placed remains among
the languages that the string literals are stored in the locale
resource file 502. Further, the order of language selection is
fixed. For example, the literal placement unit 608 selects the
language according to the order of columns in the locale
resource file 502.

For example, in the example of FIG. 6, the “languages
that the string literals are stored in the locale resource file
502” are three languages, specifically, the English language,
the Chinese language, and the Japanese language. Accord-
ingly, the literal placement unit 608 determines whether the
unselected language remains among the English language,
the Chinese language, and the Japanese language.

When it is determined that the unselected language does
not remain (e.g., when placing of the string literals regarding
all the languages is completed), the process of FIG. 13 is
completed. In contrast, when the unselected language
remains, the process of FIG. 13 proceeds to step S203.

AT step S203, the literal placement unit 608 selects one
unselected language among the languages that the string
literals are stored in the locale resource file 502. Also, the
literal placement unit 608 refers to the literal list of the
selected language. For example, when it is intended to select
the Japanese language, the literal placement unit 608 refers
to the Japanese language literal list 610.

Next, at step S204, the literal placement unit 608 deter-
mines whether the unselected record remains in the literal
list (e.g., the Japanese language literal list 610) of the
language selected at step 203.

10

15

20

25

30

35

40

45

50

55

60

65

40

When it is determined that the unselected record remains,
the literal placement unit 608 reads the next record (e.g., the
record having an ID of which order is earliest when being
represented by the ID among the unselected records) at step
S205. In contrast, when all the records have been completely
selected, the process of FIG. 13 goes back to step S202.

Subsequent to step S205, the literal placement unit 608
compares the following two values with each other at step
S206.

An actual length of the string literal (e.g., the actual byte
length) stored in the “value” field of the record read at
step S205

A value of the “maximum length” field of the record
within the offset list 613 for which the suffix of the ID
of the record read at step S205 is allocated as an ID

For example, it is assumed that the literal placement unit
608 reads the second record of the Japanese language literal
list 610 at step S205. In this case, the actual length of the
string literal of the Japanese language of “Z##F > in the
“value” field is 6-byte. Further, the ID of the second record
of'the Japanese language literal list 610 is “B00002” and the
suffix thereof is “00002”. Accordingly, the literal placement
unit 608 refers to the record having the ID of “00002” in the
offset list 613 and reads the maximum length of 11-byte
stored in the “maximum length” field of the record.

Also, when it is determined that the actual length is less
than the maximum length, the literal placement unit 608
pads the string literal of the record read at step S205 with
space characters at step S207. Accordingly, the literal place-
ment unit 608 makes the byte length of the string literal
padded with the space characters equal to the maximum
length which is referenced at step S206.

For example, it is assumed that the second record of the
Japanese language literal list 610 is read at step S205. In this
case, as described above, the actual length is 6-byte and the
maximum length is 11-byte. Accordingly, the literal place-
ment unit 608 additionally appends five space characters
after the string literal of the Japanese language of “ ZA#5 .
Accordingly, the string literal of “ 444 ~ having the length
of 11-byte and padded with five space characters is obtained.

In contrast, at step S206, when it is determined that the
actual length is not less than the maximum length (e.g.,
when the actual length is equal to the maximum length), step
S207 is skipped. For example, when the English language is
selected at step S203 and the second record of the English
language literal list 611 is read at step S206, the actual length
is 11-byte and the maximum length is also 11-byte. Accord-
ingly, in this case, step S207 is skipped.

Thereafter, at step S208, the literal placement unit 608
outputs the string literal to the RO section of the object code.
Specifically, when step S207 is executed, the literal place-
ment unit 608 outputs the string literal (e.g., the string literal
of “ %45~ padded with five space characters) obtained at
step S207. In contrast, when step S207 is skipped, the literal
placement unit 608 outputs the string literal itself (e.g., the
string literal of “Base Salary”) stored in the “value” field of
the record read at step S205.

Further, the literal placement unit 608 outputs (e.g.,
places) the language independent string literals to a range
spanning from byte O to byte (X-1) of the RO section based
on the language independent literal list 609 before executing
the process of FIG. 13. Also, the literal placement unit 608
sets an initial value of an address (hereinafter, referred to as
the “output address™) to which the string literal is output at
the time of starting the process of FIG. 13. The initial value
of the output address is, specifically, the start address (e.g.,

US 9,430,197 B2

41

Xth byte of the RO section) of the section for the language
dependent string literals of the RO section.

At step S208, the literal placement unit 608 outputs (e.g.,
places) the string literals to the location of output address.
Also, the literal placement unit 608 adds the maximum
length referenced at step S206 to the current output address
and sets the addition result as a new output address.

The process of FIG. 13 goes back to step S204 after
execution of step S208. As a result, as illustrated in FIG. 6,
the same number of bytes is allocated to the string literals
having meanings that correspond to each other between the
plurality of languages in the RO section of the object file
503. For example, among three string literals corresponding
to the string literal that appears ith in the source file 501, the
string literal of the jth language (1<j<3) is placed within a
range spanning from byte (X+(j-1)-Y+Oi) to byte (X+(G-1)
‘Y+0i+Bi-1) of the RO section.

Further, after the literal placement unit 608 completes the
process of FIG. 13, the object code generation unit 607
generates the sequence of instructions (e.g., the machine
code corresponding to the assembly code of FIG. 10 and
FIG. 11) illustrated in FIG. 10 and FIG. 11 and inserts the
generated sequence of instructions in the object code. By
doing this, the object code generation unit 607 generates the
object code which contains the string literals and the
sequence of instructions and outputs the generated object
code as the object file 503.

Subsequently, descriptions will be made on the third
embodiment with reference to FIG. 14 and FIG. 15. Further,
descriptions on the common features between the second
embodiment and the third embodiment will be suitably
omitted.

In the third embodiment, the listing sequence of the
language dependent string literals within the object code is
different from that of the second embodiment. Further, in the
third embodiment, a sequence of instructions which is
different from that in the second embodiment is generated
according to the difference in a listing sequence of the
language dependent string literals. Accordingly, in the third
embodiment, the operations of the object code generation
unit 607 of the compiler 500 of FIG. 7 are different from
those in the second embodiment.

FIG. 14 is a diagram exemplifying a portion where
language dependent string literals (hereinafter, the portion is
referred to as the “section 901”) are placed among the RO
section of the object file 900 generated in the third embodi-
ment. In FIG. 14, in the RO section, the section for storing
the language independent string literals (e.g., byte 0 to byte
(X-1) of the RO section) is omitted. The section for storing
the language independent string literals is the same as that of
the second embodiment (see, e.g., FIG. 6). That is, in FIG.
14, a portion after byte X of the RO section is illustrated.

For convenience of explanation, it is assumed that the
source file 501 and the locale resource file 502 of FIG. 6 are
used also in the third embodiment. Also, in the third embodi-
ment, the same byte length is allocated to the string literals
that correspond to each other in the locale resource file 502.

For example, 12-byte is allocated to all of three string
literals that correspond to each other in the first record of the
locale resource file 502. This is because the maximum of the
byte lengths of these three string literals is 12-byte.

Similarly, 11-byte is allocated to all of three string literals
that correspond to each other in the second record of the
locale resource file 502. Further, 21-byte is allocated to all
of three string literals that correspond to each other in the
third record and 17-byte is allocated to all of three string
literals that correspond to each other in the fourth record.

25

30

40

45

42

Specifically, within the section 901, the string literals are
placed as follows. Further, the start address of the section
901 is the Xth byte in the RO section.

Byte 0 to Byte 11: “Fuyjitsu Taro” (English language. No
padding)

Byte 12 to Byte 23: “=+#EF ” (Chinese language. Byte
22 and Byte 23 are padded bytes)

Byte 24 to Byte 35: “E15&*AF ” (Japanese language.
Byte 34 and Byte 35 are padded bytes)

Byte 36 to Byte 46: “Base Salary” (English language. No
padding)

Byte 47 to Byte 57: “&# Tz ” (Chinese language. Byte
55 to Byte 57 are padded bytes)

Byte 58 to Byte 68: “EZ#5 ~ (Japanese language. Byte
64 to Byte 68 are padded bytes)

Byte 69 to Byte 89: “Responsibility Salary” (English
language. No padding)

Byte 90 to Byte 110: “EH£T%F ” (Chinese language. Byte
98 to Byte 110 are padded bytes)

Byte 111 to Byte 131: “Hi&45 ~ (Japanese language. Byte
117 to Byte 131 are padded bytes)

Byte 132 to Byte 148: “Length of Service” (English
language. No padding)

Byte 149 to Byte 165: “T# ” (Chinese language. Byte
153 to Byte 165 are padded bytes)

Byte 166 to Byte 182: “ gfiiF#s > (Japanese language.
Byte 174 to Byte 182 are padded bytes)

The compiler 500 of the third embodiment executes the
process of FIG. 12 and step S201 of the process of FIG. 13
similarly as in the second embodiment. However, as is
apparent from the above descriptions, after executing the
process of FIG. 12 and step S201 of the process of FIG. 13,
the literal placement unit 608 of the third embodiment
outputs the language dependent string literals to the section
901 in the order which is different from the ordering of step
S202 to step S208.

Specifically, the literal placement unit 608 selects the
records of the offset list 613 in the order of ID. The selection
sequence is the same as the order in which the language
dependent string literals appear in the source file 501. Also,
the literal placement unit 608 determines whether the “unse-
lected language for the current record selected from the
offset list 613 remains™.

When the unselected language exists, the literal place-
ment unit 608 selects the language. The order of language
selection is fixed. For example, the literal placement unit
608 selects the English language, the Chinese language, the
Japanese language in this order according to the order of
columns in the locale resource file 502.

Further, the literal placement unit 608 refers to the literal
list of the selected language to read the value stored in the
“value” field of the record to which the ID (e.g., “B00003”)
containing the ID (e.g., “00001”) of the record selected from
offset list 613 as a suffix. That is, the literal placement unit
608 reads the string literal of the selected language.

Also, the literal placement unit 608 compares the actual
length with the maximum length, similarly as at step S206.
When the actual length is less than the maximum length, the
literal placement unit 608 pads the string literal with the
space characters, similarly as at step S207. Thereafter, the
literal placement unit 608 outputs the string literals to the
location of the output address. Outputting of the string literal
is the same as that performed at step S208, and initialization
and updating of the output address are similar to those in the
second embodiment.

However, after the string literal is output, the literal
placement unit 608 of the third embodiment, determines

US 9,430,197 B2

43

again whether the “unselected language for the current
record selected from the offset list 613 remains™ at a later
time. When all the languages have been completely selected,
the literal placement unit 608 selects a next record of the
offset list 613.

According to the order described above, the literal place-
ment unit 608 of the third embodiment places the plurality
of language dependent string literals in the section 901 for
each literal tuple.

In the meantime, FIG. 15 is a diagram exemplifying
sequence of instructions generated by the object code gen-
eration unit 607 in the third embodiment. The section for the
sequence of instructions as illustrated in FIG. 15 is placed
after the RO section of the object file 900.

The label 902 of “LocaleJudgment” of FIG. 15 is the same
as the label 802 of FIG. 10. Although being omitted in FIG.
15, the label which is the same as the label 800 or the label
801 exists ahead of the label 902. Further, although being
omitted in FIG. 15, the sequence of instructions which is the
same as the portion spanning from the instruction 803 to the
label 823 of FIG. 10 is continued after the label 902.
Accordingly, at the time of execution of the instruction 903,
the value of “0”, “1”, or “2” is stored in the register Reg2
according to the locale in the execution environment.

The instructions 903 and 904 are the same as the instruc-
tions 827 and 828 of FIG. 11. Further, in FIG. 11, although
instructions 825 and 826 exist ahead of the instruction 827,
the instructions 825 and 826 are not generated in the third
embodiment.

The instructions 905 to 910 are instructions for displaying
the string literal according to the locale in execution that
correspond to the first language dependent string literal of
“=-EATEN ” written in the source file 501.

The instruction 905 is an instructions for setting (e.g.,
copying) the value stored in the register Reg?2 in the register
Reg3. The instruction 906 is an instruction for multiplying
the value stored in the register Reg3 with “12” and storing
the multiplication result in the register Reg3. The object
code generation unit 607 reads the value of “12” from the
“maximum length” field of the first record of the offset list
613 and generates the instruction 906 using the read value of
“127.

The instruction 907 is an instructions for setting a total of
the value stored in the base register, the value stored in the
register Reg3, “X”, and the value of “0” in the register Reg4.
Further, the “X” indicates the byte length of the section for
the language independent string literals, similarly as in the
second embodiment.

The object code generation unit 607 reads the value of “0”
from the “offset” field of the first record of the offset list 613
and multiplies “0” and “3” (e.g., the number of languages
that the string literals are defined in the locale resource file
502). As the multiplication result, the value of “0” is
obtained. Also, the object code generation unit 607 generates
the instruction 907 using the value of “0” obtained by doing
as described above.

Here, as explained regarding Equation (1), the value (e.g.,
the value of “0”, “1”, or “2” according to the locale in
execution) set in the register Reg2 by the instructions 809,
814, 819, or 822 is denoted by “r”. Further, it should be
noted that as described above, although being omitted in
FIG. 15, the sequence of instructions that is the same as the
portion spanning from the instruction 803 to the label 823 of
FIG. 10 is generated by the object code generation unit 607
also in the third embodiment.

Further, among the language dependent string literals, the
offset Oi stored in the offset list 613 by being corresponded

40

45

65

44

to the string literal that appears ith within the source file 501
is “0” for i=1, and (B1+ . . . Bi-1) for 1<i.

Accordingly, as will be seen from FIG. 9, FIG. 10, FIG.
14, and FIG. 15, the start address Ai of the ith string literal
of the language according to the locale in execution is
represented not by Equation (1) but represented by similarly
as Equation (2).

Ai=Start Addr+Offset+X+3- Oi+r-Bi)

The instruction 907 is an example of an instruction for
calculating the start address A1 of the first string literal of the
language according to the locale in execution and setting the
start address Al in the register Reg4. That is, the start
address Al is referenced based on the execution result of the
instruction 907.

Further, the right side of Equation (2) represents an
addition of five values. The total “(StartAddr+Offset)” of
values of the first argument and the second argument is set
in the base register as the execution result of the instructions
903 and 904. Further, the fifth value of “(r-Bi)” is set in the
register Reg3 as the execution result of the instructions 905
and 906. Therefore, the start address Al is expressed as the
second operand of the instruction 907.

Further, the start address is set in the register Reg3 in the
example of FIG. 11 in the second embodiment while the start
address is set in the register Reg4 in the example of FIG. 15
of the third embodiment as described above. Therefore, the
register Regd4 is designated as the second operand of the
instruction 908. However, except for that point, the instruc-
tion 908 is the same as the instruction 830 of FIG. 11.
Further, the instructions 909 and 910 subsequent to the
instruction 908 are the same as the instructions 831 and 832
of FIG. 11. As described above, the object code generation
unit 607 determines the operands of the instructions 906,
907, and 909 and generates the instructions 906, 907, and
909 based on the first record of the offset list 613.

The instructions 911 to 916 are instructions for displaying
the string literal according to the locale in execution that
corresponds to the second language dependent string literal
of “E45 ” written in the source file 501. For example, the
instruction 913 is an instruction for setting the start address
A2 of the second string literal of the language according to
the locale in execution in the register Regd and the start
address A2 is referenced based on the execution result of the
instruction 913.

The instructions 911 to 916 are similar to the instructions
905 to 910. The only difference between the instructions 911
to 916 and the instructions 905 to 910 is just the operands of
the instructions 912, 913, and 915.

Specifically, since the value of the “maximum length”
field of the second record of the offset list 613 is “11”, the
value of “11” is designated as each of the second operands
of the instructions 912 and 915. Further, since the value of
the “offset” field of the second record of the offset list 613
is “12” and the result of multiplication of “12” and “3” is
“36”, the value of “36” is contained in the operand of the
instruction 913. That is, the object code generation unit 607
generates the instruction 912, 913, and 915 based on the
second record of the offset list 613.

The instructions 917 to 922 are instructions for displaying
the string literal according to the locale in execution that
corresponds to the third language dependent string literal of
“HiE#s ” written in the source file 501. For example, the
instruction 919 is an instruction for setting the start address
A3 of the third string literal of the language according to the

US 9,430,197 B2

45

locale in execution in the register Reg4 and the start address
A3 is referenced based on the execution result of the
instruction 919.

The instructions 917 to 922 are similar to the instructions
905 to 910. The only difference between the instructions 917
to 922 and the instructions 905 to 910 is just the operands of
the instructions 918, 919, and 921.

Specifically, since the value of the “maximum length”
field of the third record of the offset list 613 is “21”, the
value of “21” is designated as each of the second operands
of the instructions 918 and 921. Further, since the value of
the “offset” field of the third record of the offset list 613 is
“23” and the result of multiplication of “23” and “3” is “69”,
the value of “69” is contained in the operand of the instruc-
tion 913. That is, the object code generation unit 607
generates the instruction 918, 919, and 921 based on the
third record of the offset list 613.

The instructions 923 to 928 are instructions for displaying
the string literal according to the locale in execution that
correspond to the fourth language dependent string literal of
“ Bt %0 written in the source file 501. For example, the
instruction 925 is an instruction for setting the start address
A4 of the fourth string literal of the language according to
the locale in execution in the register Regd and the start
address A4 is referenced based on the execution result of the
instruction 925.

The instructions 923 to 928 are similar to the instructions
905 to 910. The only difference between the instructions 923
to 928 and the instructions 905 to 910 is just the operands of
the instructions 924, 925, and 927.

Specifically, since the value of the “maximum length”
field of the fourth record of the offset list 613 is “17”, the
value of “17” is designated as each of the second operands
of the instructions 924 and 927. Further, since the value of
the “offset” field of the fourth record of the offset list 613 is
“44” and the result of multiplication of “44” and “3” is
“132”, the value of “132” is contained in the operand of the
instruction 925. That is, the object code generation unit 607
generates the instruction 924, 925, and 927 based on the
fourth record of the offset list 613.

As will be known from FIG. 15, according to the third
embodiment, it is possible for the object code generation
unit 607 to decide the operands of the instructions 907, 913,
919, 925 at the time of compilation. This is because, firstly,
for example, a common offset irrelevant to the locale in
execution such as an offset of “(X+36)” in the instruction
913 is decided at the time of compilation. Also, secondly,
this is because the start address of the string literal according
to the locale in execution may be represented using the
common offset. That is, the problem occurring in the third
comparative example that “Since the operand is unable to be
decided at the time of compilation, the compilation process
fails” does not also occur in the third embodiment.

Further, in FIG. 15, the portion of “+X+36” is contained
in the operand of the instruction 913. The portion “+X+36”
corresponds to the portion of “+X+3-0,” in Equation (2) in
a case of i=2. However, the portion of “+X+36” contained in
the instruction 913 does not mean that an addition of “X”
and an addition of “36” are performed at the time of
execution.

Since the “X” is the value which is decided at the time of
compilation, the object code generation unit 607 actually
calculates the total of the “X” and “36” and designates the
calculated total of “(X+36)” to be contained in the operand
of the instruction 913. Those matters described above may
also be similarly applied to the instructions 907, 919, and
925.

20

25

30

40

45

55

60

46

Subsequently, descriptions will be made on the fourth
embodiment with reference to FIG. 16. Further, descriptions
on the common features between the fourth embodiment and
the second embodiment will be suitably omitted.

FIG. 16 is a diagram exemplifying data to be embedded
in the object file in a fourth embodiment. An object file 1000
of FIG. 16 contains a section 1001 for the language inde-
pendent string literals and a section 1002 for the language
dependent string literals.

The section 1001 and the section 1002 occupy a portion
of'the RO section. The section 1001 and the section 1002 are
the same as the RO section (containing the section for the
language independent string literals and the section for the
language dependent string literals) within the object file 503
of FIG. 6 of the second embodiment. Further, in the fourth
embodiment, the listing sequence of the literals in the
section 1002 is the same as that illustrated in FIG. 6 of the
second embodiment. However, an embodiment in which the
listing sequence of the literals in the section 1002 is changed
to a listing sequence which is the same as that illustrated in
FIG. 14 in the third embodiment.

In the section 1002, the string literal may be padded with
the predetermined character (e.g., space character) similarly
as in the second and the third embodiments. However,
padding with the predetermined character may be omitted in
the fourth embodiment.

In the section 1002, the same byte length is allocated to
the string literals of the plurality of languages that corre-
spond to each other regardless of whether the string literal is
to be padded with the predetermined character. For example,
the 11-byte is allocated to any one of the string literals of
“Base Salary”, “ £#& Ty 7, and “ Z%g ~ within the section
1002. This is because the length of the “Base Salary” which
has the longest byte length among three string literals is
11-byte. When the padding is omitted, 5 bytes subsequent to
the string literal of “Ef45 ~ having the length of 6-byte is
just disregarded at the time of execution.

In the fourth embodiment, the object file 1000 further
contains the section 1003 for the lengths of string literals.
The section 1003 is also a portion of the RO section. Details
of the section 1003 are also illustrated in FIG. 16. The
numeric values indicating the lengths of the respective
language dependent string literals are stored in the section
1003. In FIG. 16, for convenience of referring to, the IDs
and the addresses of the string literals are illustrated in
addition to the numeric values.

For example, as illustrated in FIG. 9, three string literals
identified by the IDs “C00001”, “D00001”, and “B00001”
correspond to each other and the lengths of the string literals
are 12 bytes, 10 bytes, and 10 bytes, respectively. In FIG. 16,
for convenience, the addresses (e.g., “Q”, “Q+2”, and
“Q+4”) for a case where the lengths of the string literals are
represented by the numeric value of 2 bytes are illustrated.
That is, in the section 1003, the numeric values of “12”,
“10”, and “10” are stored and the addresses in which these
numeric values are stored are “Q”, “Q+2”, and “Q+4”,
respectively. Further, Q is equal to X+3Y, that is, Q=X+3Y.

Similarly, in the section 1003, the numeric values of “11”,
“8”, and “6” that indicate the lengths of three string literals
identified by the IDs of “C00002”, “D00002”, and
“B00002”, respectively, are stored. Further, the numeric
values of “217, “8”, and “6” that indicate the lengths of three
string literals identified by the IDs of “C00003”, “D00003”,
and “B00003” are also stored in the section 1003. Further-
more, the numeric values of “17”, “4”, and “8” that indicate

US 9,430,197 B2

47
the lengths of three string literals identified by the IDs of
“C00004”, “D00004”, and “B00004”, respectively, are also
stored in the section 1003.

The object code generation unit 607 of the fourth embodi-
ment may execute, for example, the process of FIG. 13 to
suitably place the string literals in the section 1002 for the
language dependent string literals. Thereafter, the object
code generation unit 607 may record the numeric value
indicating the length of the string literal within the section
1003 as described above based on the respective literal lists
of'languages 610 to 612. The object code generation unit 607
may refer to the respective literal lists of languages 610 to
612 to recognize the respective lengths of the string literals.

Further, the object code generation unit 607 records the
numeric values in the section 1003 according to the order of
languages in the section 1002. For example, it is assumed
that the object code generation unit 607 has placed the string
literals in the section 1002 according to the order of lan-
guages in which “the English language is placed firstly, the
Chinese language is placed secondly, and the Japanese
language is placed thirdly”, which is the same as the order
in FIG. 6. In this case, the object code generation unit 607
places three numeric values in the following sequence with
respect to each literal tuple as illustrated in FIG. 16. That is,
the object code generation unit 607 places, with respect to
each literal tuple, the numeric value indicating the length of
the string literal of the English language in the first place,
places the numeric value indicating the length of the string
literal of the Chinese language in the second place, and
places the numeric value indicating the length of the string
literal of the Japanese language in the third place.

Further, the object file 1000 contains a section 1004 for
the sequence of instructions after the sections 1001, 1002,
and 1003. In the section 1004, the instructions similar to
those illustrated in FIG. 10 and FIG. 11 are contained.
However, the sequence of instructions in the section 1004 is
different from those of FIG. 10 and FIG. 11 in the following
matters.

An instruction (e.g., “Mov Reg5, Reg2”) for copying the
value of the register Reg2 onto the register Reg$ is inserted
ahead of the instruction 825. Accordingly, the values of,
such as “0”, “1”, and “2” according to the LCID in execution
are stored in the register Reg5.

Next, an instruction (e.g., “Mul Reg5, 2”) for making the
value of the register Reg5 double is inserted. The reason why
the second operand of the instruction is “2” is because the
numeric value indicating the length of the string literal is
represented by 2 bytes in the example of FIG. 16.

After the instruction, the instructions 825 to 828 that are
the same as those of FIG. 11 are continuously placed.
Although the instructions 829 to 832 for displaying the first
string literal are generated in the second embodiment, the
object code generation unit 607 of the fourth embodiment
may generate an instruction such as “Lea Reg6, [BaseReg+
Reg5+Q]” or “Mov DispReg2, [Reg6]” instead of the
instruction 831.

When these two instructions are executed, the numeric
value indicating the length of the string literal according to
the LCID in execution is read and the read numeric value is
set in the register DispReg2.

Similarly, the object code generation unit 607 may gen-
erate an instruction such as “Lea Reg6, [BaseReg+Reg5+
Q+6]” or “Mov DispReg2, [Reg6]” instead of the instruction
835, regarding displaying of the second string literal. Fur-
ther, since the length of the string literal is represented by the
numeric value of 2 bytes, the string literals of three lan-

10

15

20

25

30

35

40

45

50

55

60

65

48

guages are contained in the section 1002, and 2x3x2-1=6,
the portion of “+Q+6” is contained in the instruction.

Similarly, the object code generation unit 607 may gen-
erate an instruction such as “Lea Reg6, [BaseReg+
Reg5+Q+12] or “Mov DispReg2, [Reg6]” (because (2x3x
(3-1)=12)) instead of the instruction 839, regarding display-
ing of the third string literal. Further, the object code
generation unit 607 may generate an instruction such as
“Lea Regb6, [BaseReg+Reg5+Q+18]” or “Mov DispReg2,
[Reg6]” (because 2x3x(4-1)=18) instead of the instruction
843, regarding displaying of the fourth string literal.

As described above, the object code generation unit 607
may contain a numeric value which indicates the length of
each string literal and otherwise generate an instruction for
referring to the numeric value in the RO section. Although
the lengths between the string literals that correspond to
each other are different from each other according to the
language, an instruction for setting the length of the string
literal of the language according to the locale in execution in
a predetermined register may be decided at the time of
compilation in the fourth embodiment.

For example, an application may exist which is suitable
for the string literal having a shorter length according to the
locale rather than the language independent string literal of
which length is uniformly adjusted (e.g., padded with). In
the fourth embodiment, since the actual length of the string
literal according to the locale is read from the section 1003
at the time of execution, the fourth embodiment is also
suitable for the application described above.

Further, as described above, the listing sequence of the
string literals in the section 1002 may be the same as that in
FIG. 14. In this case, the specific sequence of instructions in
the section 1004 is similar to the sequence of instructions of
FIG. 15, differently from the example described above.

However, the instructions of “Mov Reg5, Reg2” and “Mul
Reg5, 27 that are the same as those described above are
inserted (e.g., after the instruction 904). Further, among the
instruction contained in FIG. 15, the instructions 909, 915,
921, and 927 are replaced with separate instructions simi-
larly as in the fourth embodiment where the instructions 831,
835, 839, and 843 are replaced with separate instructions as
described above.

Further, the second operands of the instructions 906, 912,
918, and 924 are the values of the maximum length field of
the offset list 613. However, the instruction 906, 912, 918,
and 924 are not changed also in the fourth embodiment. This
is because the second operand of the instruction is not the
value used for designating the length of the string literal but
the value used for computing the start address of the string
literal.

Further, an embodiment in which the listing sequence of
the numeric values in the fourth embodiment is changed
may be made. Specifically, the object code generation unit
607 may record a plurality of numeric values that indicate
the lengths of a plurality of string literals of a single
language in a plurality of addresses that are continuous. In
this case, the object code generation unit 607 generates the
instruction which contains an operand suitable for suitably
designating the addresses according to the listing sequence
of the numeric values.

In the meantime, the present disclosure is not limited to
the first embodiment to the fourth embodiment. Although
several modifications are described also in the above
description, the first to the fourth embodiments also may be
modified to various modifications, for example, from the
following viewpoint. The various embodiments described

US 9,430,197 B2

49

above and which will be described below may be arbitrarily
combined as long as the embodiments are not inconsistent
with each other.

For convenience of explanation, specific instructions are
described in an assembly code format in several figures, but
the instruction actually contained in the object code is the
machine code. Also, the formats of individual instructions of
the machine language may differ according to the instruction
set of the computer which executes the executable file
obtained from the object file. The compiler may generate the
suitable instruction according to the instruction set accord-
ing to the embodiment.

The compiler may generate the assembly code instead of
the object code described in the machine code depending on
a situation (e.g., in a case where a specific command option
is designated). Also, the assembler may generate the object
code from the assembly code.

The instruction to be generated may differ depending on
the instruction set as well as the specific installation of the
compiler. Further, the specific names of the registers illus-
trated in, for example, FIG. 10, FIG. 11, and FIG. 15, are just
examples for convenience of explanation.

For example, the object code generation unit 607 may
omit the instruction 825 of FIG. 11 and instead of the
instruction 825, may designate “Y” as the second operand of
the instruction 814 of FIG. 10 and also may designate “2Y”
as the second operand of the instruction 819 of FIG. 10.
Further, since the multiplication of “0” and “Y” is “0”, the
second operands of the instructions 809 and 822 are also “0”
similarly as in FIG. 10 for the case where the instruction 825
is omitted. That is, one or more instructions for calculating
the start address of the string literal using a numeric value
that corresponds to the locale in execution among three
numeric values of “0”, “Y”, and “2Y” that correspond to
three languages may be generated.

In the meantime, the space characters are used for padding
the string literal at step S207 of FIG. 13. However, a
character, for example, NULL character, other than the space
character may be used for padding the string literal depend-
ing on in embodiment (e.g., depending on the programming
language to be compiled).

For example, a null-terminated string literal may be used.
In this case, the maximum length which is set in the offset
list 613 by the process of FIG. 12 may be the byte length of
the string literal containing the NULL character. Further, in
this case, the NULL characters may be used for padding the
string literal.

A fixed value is designated as the operand indicating the
length of the string literals in the instructions 831, 835, 839,
and 843 of FIG. 11 or the instructions 909, 915, 921, and 927
of FIG. 15. However, depending on the embodiment, a
separate sequence of instructions may be used instead of the
instruction for which the fixed value is designated.

For example, the object code generation unit 607 may
generate the sequence of instructions which find out the end
of the string literal by reading the string literal from the top
of the string literal 1-byte by 1-byte. The sequence of
instructions may contain, for example, an instruction which
compares the byte read from the string literal with a special
character (e.g., NULL character) indicating the end of the
string literal, and a conditional branch instruction which
instructs to branch according to the comparison result.

In the meantime, the maximum length for the string
literals of the plurality of languages that correspond to each
other may include various values, for example, values as
illustrated in FIG. 9. Further, the unit of memory manage-
ment may be greater than 1-byte in a certain architecture.

10

15

20

25

30

35

40

45

50

55

60

65

50

For example, the unit of memory management may be
4-byte. When the unit of memory management is greater
than 1-byte, the length which is “the minimum of lengths
that are greater than the maximum length and divisible by
unit of memory management” may be used instead of the
“maximum length itself”.

For example, it is assumed that the unit of memory
management is 4-byte. Further, the values of “127, “117,
“217, and “17” are recorded in the offset list 613 of FIG. 9
as the maximum lengths. In this case, respective embodi-
ments described above may be modified as follows.

Since the number “12” is divisible by the number “4”, the
maximum length itself of “12” is used. For example, “12” is
designated as an operand in the instructions 831, 906, and
909.

The number “11” is not divisible by “4”. A minimum
integer which is greater than or equal to “11” and is divisible
by “4 is “12”. Accordingly, “12” is used instead of “11”. For
example, “12” is designated as an operand in the instructions
835, 912, and 915 instead of “11”.

The number “21” is not divisible by “4”. A minimum
integer which is greater than or equal to “21” and is divisible
by “4” is the number “24”. Accordingly, “24” is used instead
of “21”. For example, “24” is designated as an operand in
the instructions 839, 918, and 921 instead of “21”.

The number “17” is not divisible by “4. A minimum
integer which is greater than or equal to “17” and is divisible
by “4 is the number “20”. Accordingly, “20” is used instead
of “17”. For example, “20” is designated as an operand in
the instructions 843, 924, and 927 instead of “17”.

Further, in the embodiment in which the values of “12”,
“24”, and “20” as described above are used instead of the
maximum lengths of “117, “21”, and “17”, the values of
“127,“24”, and “20” are recorded in the “maximum length”
field of the offset list 613. That is, the “maximum length”
which is referenced and updated at steps S109 and S110 has
the value which is greater than the actual maximum length
of the string literal.

Further, at step S201, an offset is calculated based on the
“maximum length” field of the offset list 613. The offset
calculated as described above may differ from the value
illustrated in FIG. 9. For example, the offset of the fourth
record of the offset list 613 is changed to “48 (=12+12+24+
20)”. Accordingly, the operands of the instructions 829, 833,
837, 841, 907, 913, 919, and 925 are also changed to the
values of the offsets written in the offset list 613.

As described above, even in the embodiment where the
byte length longer than the actual maximum length is used
according to unit of memory management, the compiler may
decide the operand of the instruction for calculating the start
address of the string literal at the time of compilation.

In the meantime, the sequence of languages that the string
literals are defined in the locale resource file 502 of FIG. 6
is that the English language (which corresponds to “en-us”
is defined firstly, the Chinese language (which corresponds
to “zh-cn”) is defined secondly, and the Japanese language
(which corresponds to “ja”) is defined thirdly. However, a
developer may adopt an arbitrary other sequence. For
example, the sequence of languages that the first defined
language is the Japanese language, the second defined
language is the English language, and the third defined
language is the Chinese language may be adopted.

Further, the string literals that correspond to three lan-
guages are defined in the locale resource file 502. However,
the number of languages that the string literals are defined in
the locale resource file 502 may be an arbitrary number
which is 2 or more.

US 9,430,197 B2

51

In the meantime, the language which is used in the locale
of the execution environment may not identical with any
language among the languages that the string literals are
defined in the locale resource file 502. In this case, the
default language is selected at the time of execution among
the languages that the string literals are defined in the locale
resource file 502. For example, the default language in the
second embodiment is the English language as described
above.

When the string literal of the English language is defined
in the locale resource file 502, the object code generation
unit 607 of the second embodiment automatically deter-
mines the English language as the default language. The
instruction 822 of FIG. 10 is an example of an instruction
which is generated based on the determination.

However, the string literal of the English language is not
always defined in the locale resource file 502. Depending on
the embodiment, the compiler 500 (especially, the object
code generation unit 607) may determine the default lan-
guage according to a suitable method. Four methods are
described in the following.

According to the first method, the object code generation
unit 607 checks “whether the string literal of the English
language is defined in the locale resource file 502”. When
the string literal of the English language is defined in the
locale resource file 502, the object code generation unit 607
automatically determines the English language as the default
language.

In contrast, when the string literal of the English language
is not defined in the locale resource file 502, the object code
generation unit 607 may inquire of a user about the default
language in an interactive manner in the course of the
compilation process. Further, here, the “user” is a developer
who instructs the compiler 500 to compile the source file
501.

There may be a case where the string literals for two or
more locales that use the English language (e.g., two locales
identified by names of “en-us” and “en-gb”) may be sepa-
rately defined in the locale resource file 502. In this case, the
object code generation unit 607 may automatically select the
English language used in one of these two locales as the
default language.

According to the second method, the default language is
explicitly designated by the command option that calls the
program of the compiler 500. For example, the locale
resource file 502 of FIG. 6 may be given to the compiler 500
as an input and also the locale name of “zh-cn” may be
designated by the user by the command option. In this case,
the object code generation unit 607 generates an instruction
of “Mov Reg2, 1” (e.g., an instruction which is the same as
the instruction 814) instead of the instruction 822 of FIG. 10,
according to the designated command option. Further, here,
the “user” is also the developer who instructs the compiler
500 to compile the source file 501.

According to the third method, the default language is
designated by the format of the locale resource file 502. The
user prepares the locale resource file 502 in a suitable format
according to his intention to designate which language as the
default language. Here, the “user” is also the application
developer.

For example, the object code generation unit 607 may
regard the language which is designated first in the header
row of the locale resource file 502 as the default language.
For example, the locale name of the “en-us” is designated
first in the locale resource file 502 of FIG. 6. Accordingly,
the object code generation unit 607 recognizes that “the

10

15

20

25

30

35

40

45

55

60

52

designated default language is the English language” and
generates the instruction 822 similarly as in the second
embodiment.

In contrast, the object code generation unit 607 may
regard the language which is designated last in the header
row of the locale resource file 502 as the default language.
In this case, the object code generation unit 607 may
generate an instruction of “Mov Reg2, 2” (e.g., an instruc-
tion which is the same as the instruction 819) instead of the
instruction 822 of FIG. 10. Otherwise, in this case, the object
code generation unit 607 may simply omit generation of the
instruction 817, the instruction 818, the instruction 820, the
label 821, and the instruction 822 of FIG. 10.

The fourth method is a method in which the default
language is not determined using a single option at the time
of compilation. In the fourth method, the object code gen-
eration unit 607 may generate the sequence of instructions
containing the instruction as follows, instead of the instruc-
tion 822.

Several instructions for displaying GUI (Graphical User
Interface) widget (e.g., a drop down list) in order for the
user to select one of the plurality of languages desig-
nated in the header row of the locale resource file 502.
Further, here, the “user” is an end user who uses the
executable file 507.

Several instructions for setting the suitable value in the
register Reg?2 based on the value input through the GUI
widget. Further, the conditional branch instruction is
contained among these instructions.

According to the fourth method, when the language used
in the locale of the execution environment is not identical
with any one of the languages that the string literals are
defined in the locale resource file 502, the default language
is designated by the user through the GUI widget at the time
of execution. Further, also in the fourth method, the
sequence of instructions itself generated by the object code
generation unit 607 is decided at the time of compilation.

As described above, although descriptions have been
made on various embodiments, the following effects may be
achieved by all the embodiments.

According to various embodiments described above, the
resource file is not needed to be referenced at the time of
execution, differently from the first comparative example of
FIG. 2. Accordingly the executable file and the plurality of
resource files are not needed to be distributed to the end user
by being combined as a set.

For example, it is possible to be adapted to a plurality of
cultural regions (e.g., a plurality of locales) by using only a
single file such as the executable file 507 of the FIG. 7. That
is, it is possible to be adapted to a plurality of languages by
using only a single executable file.

When it is unnecessary to refer to the resource file at the
time of execution, an overhead of a call through the resource
call DLL 202 may be removed. As a result, an execution
performance of application is improved. Further, when it is
unnecessary to refer to the resource file at the time of
execution, a management cost for preventing the end user
from erroneously deleting, editing and/or moving the
resource file is not needed.

Further, according to various embodiments described
above, as in the second comparative example of FIG. 3 and
FIG. 4, it is also unnecessary to perform the processing that
“a plurality of source files are generated according to the
plurality of locales and respective source files are compiled
to build the plurality of executable files”. According to
various embodiments described above, the executable file
(e.g., the executable file 507 of FIG. 7) adaptable to the

US 9,430,197 B2

53

plurality of locales may be prepared by one time build.
Accordingly, the cost of development and maintenance in
various embodiments described above is lower than that in
the second comparative example.

Further, the operand is not able to be decided at the time
of compilation so that the compilation fails in the third
comparative example, but such a failure does not occur in
various embodiments described above. This is because the
same length is allocated to a plurality of string literals that
belong to the same literal tuple. Therefore, in various
embodiments described above, it is possible to compute the
start address of any one of the string literals that belong to
the same literal tuple using the common offset which is
irrelevant to the locale in execution and thus, the operand
may be decided at the time of compilation.

For example, as illustrated in FIG. 6, the plurality of string
literals themselves that belong to the same literal tuple are
different from each other in length. However, when the same
length is allocated to the plurality of string literals, the start
address of each string literal is decided at the time of
compilation. That is, the operand is uniquely decided at the
time of compilation. Accordingly, the failure as in the third
comparative example may be avoided.

As described above, various embodiments described
above have various effects that are advantageous for pro-
moting multilingualization of the application. Accordingly,
it is expected that various embodiments described above
may contribute to promote the multilingualization of the
application.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a illustrating of the
superiority and inferiority of the invention. Although the
embodiments of the present invention have been described
in detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.

What is claimed is:

1. A compile apparatus, comprising:

a memory; and

a processor coupled to the memory and configured to
execute a compilation process, the compilation process
includes:

reading a source code to be compiled and literal tuples
each of which is a combination of a plurality of string
literals having meanings that correspond to each other
between a plurality of languages, and

generating a code in which regarding each literal tuple, a
calculation byte length which is greater than or equal to
a longest byte length of the string literal among the
literal tuple is allocated to each of the plurality of string
literals that belong to the literal tuple and a start address
of each string literal is referenced according to a locale
designated at an execution time.

2. The compile apparatus according to claim 1, wherein

the generating the code includes;

generating a plurality of instructions which contains one
or more instructions for acquiring a locale identification
information indicating the locale, one or more instruc-
tions for a conditional branch according to the locale
identification information, and one or more instructions
for referring to the start address of each string literal

10

15

20

25

30

35

40

45

50

55

60

65

54

using a plurality of numeric values that correspond to
the plurality of languages, and

inserting the plurality of instructions in the code.

3. The compile apparatus according to claim 2, wherein

in the code generated at the generating, the string literal
is placed for each language and with respect to each
language, a plurality of string literals of the language
are placed in the order in which the plurality of string
literals are defined between a plurality of literal tuples.

4. The compile apparatus according to claim 3, wherein

the compilation process further includes calculating an
offset which corresponds to each literal tuple by cumu-
latively adding the calculation byte length, and the one
or more instructions for referring to the start address of
each string literal contains an instruction in which an
operand containing the offset is designated.

5. The compile apparatus according to claim 4, wherein

the compilation process further includes calculating a
total of the calculation byte lengths of all the literal
tuples, and

the one or more instructions for referring to the start
address of each string literal includes an instruction for
calculating the start address of a range in which a
plurality of string literals of one language, which cor-
responds to the locale among the plurality of languages,
are placed based on the total of the calculation byte
lengths.

6. The compile apparatus according to claim 3, wherein

the source code contains the string literal or a reference to
the string literal with respect to each of the plurality of
string literals written in one language among the plu-
rality of languages, and

the order in which the plurality of string literals are
defined between the literal tuples is based on an order
in which the string literal written in one language or the
reference to the string literal written in one language
appears in the source code.

7. The compile apparatus according to claim 2, wherein

in the code generated in the generating, the string literal
is placed for each literal tuple and with respect to the
literal tuple, the plurality of string literals that belong to
the literal tuple are placed in the order in which the
plurality of string literals are defined between the
plurality of languages.

8. The compile apparatus according to claim 7, wherein

the compilation process includes calculating a first value
which corresponds to each literal tuple by cumulatively
adding the calculation byte length, and the one or more
instructions for referring to the start address of each
string literal contains an instruction in which an oper-
and containing a second value, which is determined
according to the number of plurality of languages and
the first value, is designated.

9. The compile apparatus according to claim 2, wherein

specific natural languages are used in a first locale and a
second locale, two of the plurality of languages are the
specific natural language used in the first locale and the
specific natural language used in the second locale, and

an instruction for calculating the start address by using the
first numeric value of the plurality of numeric values in
a case where the locale identification information indi-
cates the first locale and for calculating the start address
by using the second numeric value of the plurality of
numeric values in a case where the locale identification
information indicates the second locale, is contained in
the plurality of instructions.

US 9,430,197 B2

55

10. The compile apparatus according to claim 2, wherein

specific natural languages are used in the first locale and
the second locale,

one of the plurality of languages is the specific natural
language which is common between the first locale and
the second locale, and

an instruction for calculating the start address by using
any one of the plurality of numeric values even in any
one of a case where the locale identification informa-
tion indicates the first locale and a case where the locale
identification information indicates the second locale,
is contained in the plurality of instructions.

11. The compile apparatus according to claim 2, wherein

the compilation process includes determining one of the
plurality of languages as a default language, which is
used in a case where the language used in the locale
which is designated at the execution time is different
from any one of the plurality of languages, and

an instruction for calculating the start address using a
numeric value which correspond to the default lan-
guage among the plurality of numeric values in a case
where the locale identification information indicates
the locale which uses a language different from any one
of the plurality of languages, is contained in the plu-
rality of instructions.

12. The compile apparatus according to claim 1, wherein

the generating the code includes, with respect to each
literal tuple, padding each string literal, which has a
length less than the calculation byte length among the
plurality of string literals that belong to the literal tuple,
with a predetermined character and placing the string
literal padded with the predetermined character in the
code.

13. The compile apparatus according to claim 1, wherein

the generating the code includes:

embedding the numeric value which indicates the length
of each of the plurality of string literals that belong to
each literal tuple in the code, and

generating an instruction for referring to an address in
which the numeric value indicating the length is
embedded.

14. The compile apparatus according to claim 1, wherein

the generating the code includes inserting a language
independent string literal in the code when the source
code contain the language independent string literal
which is used commonly regardless of the locale or
contain a reference to the language independent string
literal.

15. The compile apparatus according to claim 1, wherein

10

20

25

30

40

45

the calculation byte length corresponding to each literal 50

tuple is the longest byte length of the string literal
among the plurality of string literals that belong to the
literal tuple.

56

16. The compile apparatus according to claim 1, wherein

the calculation byte length corresponding to each literal
tuple is a minimum byte length which satisfies a
condition that the minimum byte length is a multiple of
a predetermined byte length which is unit of memory
management and is greater than or equal to the longest
byte length of the string literal among the plurality of
string literals that belong to the literal tuple.

17. The compile apparatus according to claim 1, wherein
the locale defines a language in an operating system in an
execution environment.

18. A compile method, comprising:

reading, by a computer, a source code to be compiled and
literal tuples each of which is a combination of a
plurality of string literals having meanings that corre-
spond to each other between a plurality of languages,
and

generating, by the computer, a code in which regarding
each literal tuple, a calculation byte length which is
greater than or equal to a longest byte length of the
string literal among the literal tuple is allocated to each
of the plurality of string literals that belong to the literal
tuple and a start address of each string literal is refer-
enced according to a locale designated at an execution
time.

19. The compile method according to claim 18, wherein
the locale defines a language in an operating system in an
execution environment.

20. A non-transitory, computer-readable recording
medium having stored therein a program for causing a
computer to execute a process, the process comprising:

reading, by the computer, a source code to be compiled
and literal tuples each of which is a combination of a
plurality of string literals having meanings that corre-
spond to each other between a plurality of languages,
and

generating, by the computer, a code in which regarding
each literal tuple, a calculation byte length which is
greater than or equal to a longest byte length of the
string literal among the literal tuple is allocated to each
of the plurality of string literals that belong to the literal
tuple and a start address of each string literal is refer-
enced according to a locale designated at an execution
time.

21. The non-transitory, computer-readable recording
medium according to claim 20, wherein the locale defines a
language in an operating system in an execution environ-
ment.

